

CIS Community Defense Model

Version 2.0

Acknowledgments

The Center for Internet Security® (CIS) would like to thank the many security experts who volunteer their time and talent to support the CIS Controls® and other CIS work, especially the Community Defense Model (CDM). CIS products represent the effort of a veritable army of volunteers from across the industry, generously giving their time and talent in the name of a more secure online experience for everyone.

We also acknowledge and greatly appreciate the work of the Verizon Data Breach team, CrowdStrike®, and the many contributors to the MITRE ATT&CK® framework. They are representative of the large community of technical excellence, good will, and open sharing that allows all of us to build greater confidence into the cyber world.

Editor

Valecia Stocchetti, CIS

Contributors

Ginger Anderson, CIS
Jennifer Jarose, CIS
Joshua M. Franklin, CIS
Joshua Palsgraf, CIS/MS-ISAC
Leanna Caton, CIS/MS-ISAC
Michael Woodward, CIS/MS-ISAC
Patrick Araya, CIS
Philippe Langlois, Verizon
Phyllis Lee, CIS

Randy Rose, CIS/MS-ISAC Richard Nelson, CIS/MS-ISAC Robin Regnier, CIS Samuel P. Farnan, CIS/MS-ISAC Stephen E. Jensen, CIS/MS-ISAC Thomas Sager, CIS Tiffany Bergeron, The MITRE Corp. Tony Sager, CIS

This work is licensed under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International Public License (https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode).

To further clarify the Creative Commons license related to the CIS Controls content, you are authorized to copy and redistribute the content as a framework for use by you, within your organization and outside of your organization for non-commercial purposes only, provided that (i) appropriate credit is given to CIS, and (ii) a link to the license is provided. Additionally, if you remix, transform, or build upon the CIS Controls, you may not distribute the modified materials. Users of the CIS Controls framework are also required to refer to (https://www.cisecurity.org/controls/) when referring to the CIS Controls in order to ensure that users are employing the most up-to-date guidance. Commercial use of the CIS Controls is subject to the prior approval of the Center for Internet Security, Inc. (CIS).

CIS Community Defense Model v2.0

CONTENTS

Executive Summary	1
Results Summary	2
Overview	
What's New in CDM v2.0	5
Glossary	6
Methodology	7
Implementation Groups and the CDM	7
Security Function vs. Security Value	8
Overall Process	8
ATT&CK Structure	9
Mapping Relationships	10
How to Use This Document	11
Security Function Analysis	12
ATT&CK Mitigations	12
ATT&CK (Sub-)Techniques	14
CIS Safeguards	16
Data Source Analysis	18
Data Types	18
Attack Type Data Sources	19
Top Attack Types	19
Attack Pattern Data Sources	21
Security Value Analysis	22
Malware	22
Ransomware	23
Web Application Hacking	24
Insider Privilege and Misuse	25
Targeted Intrusions	26
Summary	27
Conclusion	30
Closing Notes	31
Future Work	32

Appendix A Acronyms and Abbreviations	A1
Appendix B Links and Resources	B1
Appendix C Background	C1
Appendix D ATT&CK (Sub-)Techniques With No Mapping to CIS Safeguards	D1
Appendix E ATT&CK (Sub-)Techniques With No Mapping to ATT&CK Mitigations	E1
Appendix F Unmapped CIS Safeguards to ATT&CK Framework	F1
Appendix G ATT&CK Navigator Visualizations for Attack Patterns	G1
Malware	G1
Ransomware	G2
Web Application Hacking	G3
Insider Privilege and Misuse	G4
Targeted Intrusions	G5
Appendix H Unmapped ATT&CK (Sub-)Techniques to CIS Safeguards Within an Attack Pattern	H1
Appendix I ATT&CK (Sub-)Techniques With No ATT&CK Mitigation Mapped Within an Attack Pattern	l1
TTTUINI UII ALLUUN I ULLUIII	14

CIS Community Defense Model v2.0

Executive Summary

This guide is the second edition of the Center for Internet Security® (CIS) Community Defense Model (CDM). The same security experts who help create the CIS Critical Security Controls® (CIS Controls®) work with CIS to apply the CDM to current threat data.

Enterprises that adopt the CIS Controls have repeatedly asked us to identify "What should we do first?" In response, the Controls Community sorted the Safeguards in the CIS Controls into three Implementation Groups (IGs) based on their difficulty and cost to implement.

Implementation Group 1 (IG1), the group that is least costly and difficult to implement, is what we call essential cyber hygiene (formerly basic cyber hygiene) and are the Safeguards we assert that every enterprise should deploy. For enterprises that face more sophisticated attacks or that must protect more critical data or systems, these Safeguards also provide the foundation for the other two Implementation Groups (IG2 and IG3).

Enterprises naturally want to know "How effective are the CIS Controls against the most prevalent types of attacks?" The CDM was created to help answer that and other questions about the value of the Controls based on currently available threat data from industry reports.

Our methodology is straightforward.

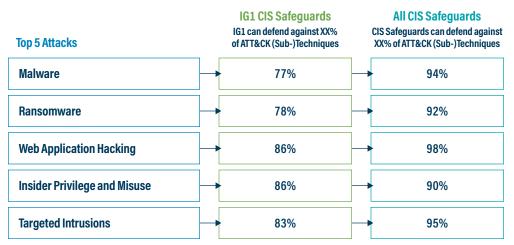
The MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK®) framework allows us to express any attack type as a set of attack techniques, which we refer to as *attack patterns*. For each of the five most prevalent attack types, such as ransomware, we collect the corresponding attack patterns through analysis of industry threat data. We then track which Safeguards defend against each of the techniques found in those attack patterns. This methodology allows us to measure which Safeguards are most effective overall for defense across *attack types*.

Our results this year increased our confidence that our conclusions from the first CDM were correct. Based on additional industry threat data sources, the use of the updated version 8 of the CIS Controls and version 8.2 of the MITRE ATT&CK framework, we verified that the CIS Controls are effective at defending against 86% of the ATT&CK (sub-)techniques found in the ATT&CK framework. More importantly, the Controls are highly effective against the top five attack types found in industry threat data. The bottom line is that the CIS Controls, and specifically IG1, are a robust foundation for your cybersecurity program.

Our results also confirm that establishing and maintaining a secure configuration process (CIS Safeguard 4.1) is a linchpin Safeguard for all five attack types, which reinforces the importance of configurations, such as those found in the CIS Benchmarks™.

CIS Community Defense Model v2.0 Executive Summary Page 1

Results Summary

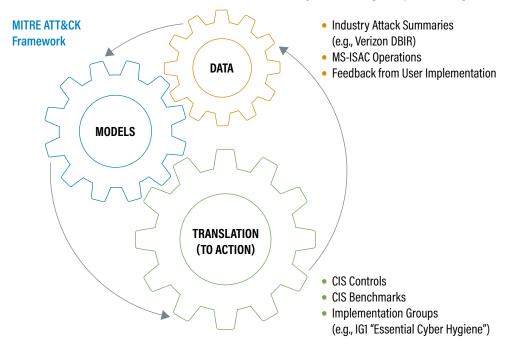

Overall, the findings from this year's CDM both reaffirmed and strengthened, with objective data, what we already thought to be true—IG1 provides a viable defense against the top five attacks.

For CDM v2.0, the top five attack types are: Malware, Ransomware, Web Application Hacking, Insider Privilege and Misuse, and Targeted Intrusions. Our analysis found that, overall, implementing IG1 Safeguards defends against 77% of ATT&CK (sub-) techniques used across the top five attack types. That percentage goes up to 91% if all CIS Safeguards are implemented. These results strongly reinforce the value of a relatively small number of well-chosen and basic defensive steps (IG1) and also support IG1 as the preferred on-ramp to implementing the CIS Controls. We also found that CIS Safeguard 4.1 "Establish and Maintain a Secure Configuration Process" is most effective in defending against the top five attacks, reinforcing the importance of secure configurations, such as those contained within the CIS Benchmarks.

Additionally, independent of any specific attack type, implementing IG1 Safeguards defends against 74%¹ of ATT&CK (sub-)techniques in the MITRE ATT&CK framework, and implementation of all CIS Safeguards defends against 86% of ATT&CK (sub-)techniques in the framework. Since many ATT&CK (sub-)techniques are used across multiple attack types, we can extrapolate that the CIS Controls defend against more than the top five attacks mentioned in this guide.

We also analyzed each attack type individually. As an example, our analysis determined that implementing IG1 Safeguards defends against 78% of Ransomware ATT&CK (sub-)techniques, and implementing all CIS Safeguards defends against 92% of those techniques. This, and other attack pattern findings, can be seen in Figure 1 below. It is worth noting that 100% coverage of all attacker techniques for any attack type is difficult, as some techniques are not able to be defended against. Additionally, some IG1 Safeguards are foundational and process-oriented, such as enterprise and software asset management. While these foundational Safeguards may not be included in the ATT&CK model as defensive measures, they are necessary in order to successfully implement other Safeguards that map to ATT&CK.

All percentages are based on ATT&CK (sub-)techniques assigned to an ATT&CK mitigation.


CIS Community Defense Model v2.0 Results Summary Page 2

¹ All percentages based on ATT&CK (sub-)techniques that are assigned to an ATT&CK mitigation, and can therefore be defended.

Overview

In this guide, we present the CDM v2.0. Our goal is to bring another level of rigor and detail to support the development and prioritization of the CIS Controls. The CDM process takes data sources (such as the Verizon Data Breach Investigations Report (DBIR)), drives them into models (such as the MITRE ATT&CK framework), and then translates them into action—creating our best practices (e.g., CIS Controls and CIS Benchmarks). The CDM is continuous, with each cycle starting the process again.

Figure 2. CDM Process

As a part of the CDM process, we use the MITRE Enterprise ATT&CK framework v8.2, the industry-accepted way to describe the individual technical details of a cyber-attack, which provides answers to questions, such as: "Which ATT&CK tactics (the objectives of an attacker) does an attacker use?"; "What are the ATT&CK (sub-) techniques (specific technical actions) used within those tactics?"; and "What are the general ATT&CK mitigations that could help defend against them?" Equally important in the CDM process is using industry threat data (i.e., data sources) of the most prevalent and relevant attacks plaguing enterprises. As part of the CDM process, we research authoritative, industry-recognized data sources, both national and international, which allow us to determine the top five attack types and create comprehensive attack patterns. Our work with the CIS Controls and ATT&CK framework, combined with using authoritative data sources to back our analysis, is the backbone of the CDM.

The CDM was constructed using the following process:

- We mapped CIS Safeguards to the ATT&CK framework.
- We identified the security function—independent of any specific attack, the ability
 of a CIS Safeguard to defend against one or more attacker techniques (e.g.,
 ATT&CK (sub-)techniques).

CIS Community Defense Model v2.0 Overview Page 3

- Using authoritative data sources, we identified the top five attack types that
 enterprises should defend against. For CDM v2.0, the top five attack types are:
 Malware, Ransomware, Web Application Hacking, Insider Privilege and Misuse, and
 Targeted Intrusions.
- For each attack type, we used authoritative data sources to determine the attack pattern—the set of attacker techniques (e.g., ATT&CK (sub-)techniques) used in each attack type.
- We then identified the security value—the benefit of implementing a CIS Safeguard to defend against an individual attack or a group of attacks.

There are several ways that CDM analysis can be used to design, prioritize, implement, and improve an enterprise's security program. Our analysis affirms that enterprises should begin with implementing IG1 first (followed by IG2 and IG3, as appropriate) in order to, at a minimum, defend against the top five attacks. Our CDM v2.0 mappings also provide enterprises with more granularity, if needed. For example, if an enterprise implements CIS Safeguard "4.1–Establish and Maintain a Secure Configuration Process," our mappings can provide a list of ATT&CK (sub-) techniques that the Safeguard defends against. Attack Cards for each individual attack type, and all attack types combined, are also available on CIS WorkBench, to provide a listing of Safeguards that are the most effective in defending against specific ATT&CK (sub-)techniques.

CIS is dedicated to taking a "community-first" approach. Please join our CDM Community on CIS WorkBench to take advantage of these and other great resources, as well as to participate in next year's CDM (v3.0).

CIS Community Defense Model v2.0 Overview Page 4

What's New in CDM v2.0

First, let's recap what we did in v1.0. Released in 2020, v1.0 made use of two publicly-available, authoritative industry resources: the MITRE ATT&CK framework and the Verizon DBIR. To establish the baseline model, a master mapping was created, starting with the 171 CIS Safeguards in CIS Controls v7.1. Following this, CIS Safeguards were mapped to the 41 ATT&CK mitigations in Enterprise ATT&CK v6.3, which MITRE already had mapped to the 266 ATT&CK techniques. This gave us the security function relationship between CIS Safeguards and ATT&CK techniques, identifying the ATT&CK techniques that could be defended against by implementing the CIS Safeguards.

We then selected the five most prevalent attack types (Malware, Ransomware, etc.) from the Verizon DBIR, and the ATT&CK techniques used within those attack types, forming what we call an attack pattern. Using the master mapping of the CIS Safeguards to ATT&CK, we then mapped each ATT&CK technique in the attack pattern back to the relevant CIS Safeguards. This allowed us to analyze the security value of the CIS Safeguards against these five attack types.

To build off of the foundational principles in v1.0, we made a few updates to v2.0, including the following:

- Updated Version of the CIS Controls. We used CIS Controls v8 as the basis for our mappings and analysis.
- Updated Version of the ATT&CK Framework. We used Enterprise ATT&CK v8.2, which is made up of 178 ATT&CK techniques, 352 ATT&CK sub-techniques (530 combined "ATT&CK (sub-)techniques"), and 42 ATT&CK mitigations. Note that the term "ATT&CK (sub-)techniques" is used throughout this guide to refer to ATT&CK techniques and ATT&CK sub-techniques as a whole, unless otherwise indicated.
- Additional Data Sources Added. We used several additional national and international data sources, such as the 2020 Verizon DBIR, ENISA Threat Landscape-The Year in Review, and more, to determine the top five attacks. Additional data sources were used in CDM v2.0 to create more comprehensive attack patterns. A full listing of data sources used to identify attack types and create attack patterns can be found here.²
- Updated Master Mapping. We mapped at the ATT&CK (sub-)technique level, in order to provide more granularity and clarity for our analysis. ATT&CK mitigations were used as a guide to map to the ATT&CK (sub-)techniques, which allowed us to select the specific ATT&CK (sub-)techniques that can be defended against through the implementation of one or more CIS Safeguards.

2 Attack Types and Attack Patterns Attack Types and Attack Patterns

CIS Community Defense Model v2.0 What's New in CDM v2.0 Page 5

Glossary

The following are terms used throughout this guide and their specific meanings:

ATT&CK (sub-)technique	The combination of ATT&CK techniques and ATT&CK sub-techniques. Collectively referred to as ATT&CK (sub-) techniques, there are 530 in total for Enterprise ATT&CK v8.2.
ATT&CK mitigation	A list of defensive actions that can be taken to defend against an ATT&CK (sub-)technique.
ATT&CK sub-technique	The specific actions that an attacker takes to achieve an ATT&CK tactic, nested within ATT&CK techniques.
ATT&CK tactic	The objectives of an attacker such as reconnaissance, credential access, and exfiltration. A specific set of ATT&CK (sub-) techniques can be found within any given ATT&CK tactic.
ATT&CK technique	The specific actions that an attacker takes to achieve an ATT&CK tactic, listed under each ATT&CK tactic.
Attack pattern	The set of attacker techniques (e.g., ATT&CK (sub-)techniques) required to execute an attack. Attack patterns can change from year to year.
Attack type	The high-level grouping of attacks. For CDM v2.0, they are: Malware, Ransomware, Web Application Hacking, Insider Privilege and Misuse, and Targeted Intrusions.
Attacker techniques	A general term referring to actions that an attacker takes to compromise a system or network that's not assigned to a specific security framework.
CIS Critical Security Controls (CIS Controls)	A set of 18 best practice recommendations that help enterprises focus their resources on the most critical actions to defend against the most prevalent real-life attacks. Each CIS Control consists of a subset of Safeguards.
CIS Safeguards	A set of 153 specific recommendations that make up the CIS Controls. Organized into Implementation Groups, grouped as IG1, IG2, and IG3 Safeguards.
Data source	A threat report, or other dataset, that provides an analysis of attacks, attacker tactics, techniques, and procedures (TTPs), or other specific information related to cybersecurity. Also referred to as industry threat data sources. Used to determine attack types and attack patterns.
Data type	Can be one of multiple categorizations of data that are incorporated into a data source (e.g., self-reported data, sensor data, incident response data, product usage data, and open-source intelligence).
Implementation Group 1 (IG1)	Implementation Group 1, also known as essential cyber hygiene (formerly basic cyber hygiene). IG1 includes defensive actions that are applicable to even the smallest and least-funded enterprises.
Implementation Groups	A simple and accessible way to help enterprises prioritize the implementation of the CIS Controls.
Security function	Independent of a specific attack type, the ability of a CIS Safeguard to defend against one or more attacker techniques (e.g., ATT&CK (sub-)techniques).
Security value	The benefit a CIS Safeguard provides in defending against an individual attack type or a group of attack types.

CIS Community Defense Model v2.0 Glossary Page 6

Methodology

Implementation Groups and the CDM

In CIS Controls v7.1, we introduced a new prioritization scheme referred to as Implementation Groups (IGs). There are three IGs: IG1, IG2, and IG3. To develop the IGs, CIS identified a core set of CIS Safeguards that enterprises with limited resources, expertise, and risk exposure should focus on. This is IG1, or essential cyber hygiene. IG1 includes defensive actions that are applicable to even the smallest and least-funded enterprises. Each IG builds upon the previous one. IG2 identifies additional CIS Safeguards for enterprises with more resources and expertise than those in IG1, and also greater risk exposure. IG3, for enterprises that have the highest level of risk exposure, includes all 153 CIS Safeguards.

The CDM tells us that IG1 defends against the top five attacks. Specifically, the CDM can also help an enterprise focus on which technical IG1 Safeguards are most effective in defending against specific attacks. We at CIS feel that this is a powerful approach to an enterprise's risk management strategy. Additionally, some IG1 Safeguards are foundational and process-oriented, such as enterprise and software asset management. These foundational Safeguards may not be included in the ATT&CK model as defensive measures; however, they must be implemented before the more technical Safeguards that do map to ATT&CK can be properly implemented.

Figure 3. CIS Controls Implementation Group overview

The number of Safeguards an enterprise is expected to implement increases based on which group the enterprise falls into.

153
TOTAL SAFEGUARDS

IG3 assists enterprises with IT security experts to secure sensitive and confidential data. IG3 aims to prevent and/or lessen the impact of sophisticated attacks.

23 SAFEGUARDS

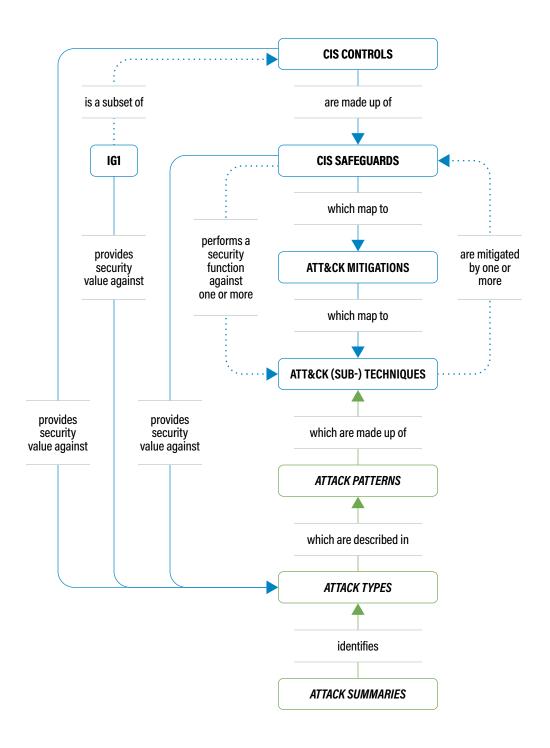
IG2 assists enterprises managing IT infrastructure of multiple departments with differing risk profiles. IG2 aims to help enterprises cope with increased operational complexity.

74
SAFEGUARDS

IG1 is the definition of essential cyber hygiene and represents a minimum standard of information security for all enterprises. IG1 assists enterprises with limited cybersecurity expertise thwart general, non-targeted attacks.

56SAFEGUARDS

Security Function vs. Security Value


Throughout the CDM v2.0, we focus on two main concepts: the *security function* and the *security value* of the CIS Safeguards. The security function can best be defined as the ability of a CIS Safeguard to defend against one or more ATT&CK (sub-)techniques, independent of any specific attack type. The security function does not necessarily answer the question of why we should implement a particular CIS Safeguard, or the benefit in doing so. Rather, the security function provides the foundation that allows us to analyze the security value, defined as the benefit a CIS Safeguard provides in defending against one or more attack types.

Overall Process

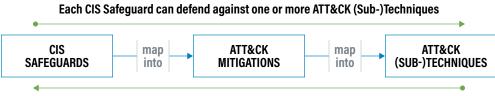
The CDM is comprised of a series of seven steps to get us to the end result. They are:

- 1 Create master mapping. We created a master mapping from CIS Controls v8 to Enterprise ATT&CK v8.2, mapping the CIS Safeguards to the ATT&CK (sub-) techniques. ATT&CK mitigations were used as a guide to map at the ATT&CK (sub-)technique level.
- 2 Analyze security function. We analyzed the security function of the CIS Safeguards against ATT&CK (sub-)techniques using the master mapping in Step 1.
- 3 Identify top five attack types. Using multiple data sources, we identified the five most prevalent attack types experienced by enterprises in 2020-2021: Malware, Ransomware, Web Application Hacking, Insider Privilege and Misuse, and Targeted Intrusions.
- **4 Construct attack patterns.** For each attack type, we used multiple data sources to create comprehensive attack patterns—the set of attacker techniques (e.g., ATT&CK (sub-)techniques) used in an attack type.
- **5 Perform reverse mapping.** We used the master mapping of the CIS Controls to ATT&CK (in Step 1) to map each ATT&CK (sub-)technique associated with an attack type back to the CIS Safeguards.
- 6 Analyze security value. The reverse mapping allowed us to analyze the security value of implementing the CIS Safeguards against one or more attack types, meaning, how well do the CIS Controls defend against the top five attacks.
- 7 Create visualizations. The MITRE ATT&CK Navigator allows users to create interactive "layers" of ATT&CK. This tooling allowed us to visualize each attack pattern individually and combined across all attack types. These layers can be found on CIS WorkBench here.

The detailed CDM process can be seen below in Figure 4.

ATT&CK Structure

In order to fully understand the CDM methodology, it is fundamental to understand how the ATT&CK framework is organized and interconnects. The highest level within ATT&CK is called a tactic. These are, as previously mentioned, the objectives of an attacker, such as reconnaissance, credential access, and exfiltration. There are 14 tactics in ATT&CK v8.2, represented with a "TA" before their unique identifier. Each ATT&CK tactic contains multiple ATT&CK techniques, which contain ATT&CK subtechniques, where applicable. ATT&CK (sub-)techniques are the specific actions that an attacker takes to achieve an ATT&CK tactic. They are represented with a "T" before their unique identifier, with ATT&CK sub-techniques having ".0XX" after the main unique identifier. There are 530 ATT&CK (sub-)techniques in total for v8.2.


ATT&CK also has *mitigations*, each including several ATT&CK (sub-)techniques. ATT&CK mitigations provide a list of actions that can be taken to defend against a specific ATT&CK (sub-)technique. The ATT&CK mitigations begin with the letter "M" followed by a unique identifier (e.g., M1047). There are 42 ATT&CK mitigations in v8.2. It is worth noting that ATT&CK techniques and their child sub-technique(s) do not always map back to the same ATT&CK mitigation. For example, "M1036–Account Use Policies" mitigates against "T1110–Brute Force," which has four ATT&CK subtechniques. However, the mitigation M1036 is effective against only three of the four (sub-)techniques (T1110.001, T1110.003, and T1110.004), as indicated on the ATT&CK website. This warranted us to map at the ATT&CK (sub-)technique level for the CDM master mapping for accuracy.

It is important to note that out of the 530 ATT&CK (sub-)techniques in v8.2, 84 have no assignment to an ATT&CK mitigation, meaning that no matter what security framework is being implemented, these 84 ATT&CK (sub-)techniques cannot be easily mitigated, based on information provided on the ATT&CK website. An example of one of these ATT&CK (sub-)techniques is "T1546-Event Triggered Execution," which "cannot be easily mitigated with preventive controls since it is based on the abuse of system features," according to the ATT&CK website. Our assessment of these ATT&CK (sub-)techniques found that the majority are used in what is often referred to as "Living off the Land (LotL)" attacks, where attackers use existing tools and tactics on the targeted system or network to carry out an attack, rather than exploit a specific system or control weakness; these attacks are therefore difficult to defend against. Unless otherwise noted, all calculations in this guide do not take into account these ATT&CK (sub-)techniques. Additional information on ATT&CK v8.2 can be found on the ATT&CK website.

Mapping Relationships

As part of Step 1 of the CDM process, the CIS Safeguards are mapped to ATT&CK mitigations and then to ATT&CK (sub-)techniques. Ultimately, this high-level mapping (from CIS Safeguards to ATT&CK mitigations) serves as the guide for connecting CIS Safeguards to ATT&CK (sub-)techniques, and therefore it is worthwhile to analyze both: how well the CIS Safeguards map to ATT&CK mitigations and then to ATT&CK (sub-)techniques. The CIS Safeguard mapping to ATT&CK is available separately from this guide on CIS WorkBench and via the CIS website. Figure 5 below demonstrates the mapping relationship. It should be noted that the mapping creates a many-to-many relationship between CIS Safeguards and ATT&CK (sub-)techniques, meaning that implementing a single CIS Safeguard defends against multiple ATT&CK (sub-)techniques, and a single ATT&CK (sub-)technique can be defended through implementation of one or more CIS Safeguards.

Figure 5. Mapping relationship between CIS Safeguards and ATT&CK

Each ATT&CK (Sub-)Technique can be defended by one or more CIS Safeguards

It is worth noting that the ATT&CK mitigations represent defensive cybersecurity actions at a different level of abstraction than the CIS Safeguards. The CIS Safeguards cover a larger number of defensive cybersecurity concepts than the ATT&CK mitigations. This difference in granularity is perhaps best demonstrated through the number of defensive actions within each collection: CIS Controls v8 contains 153 CIS Safeguards, whereas ATT&CK v8.2 contains 42 ATT&CK mitigations.

How to Use This Document

For those looking to understand more about the CDM process, this guide is a perfect start to give readers:

- · An overview of how the CDM works
- An explanation for why the CDM is helpful to build an enterprise's cybersecurity program
- A high-level overview of results from this year's CDM
- An in-depth analysis of ATT&CK (sub-)techniques that can be defended against through implementation of the CIS Safeguards, overall and for each attack type
- Additional links and resources

For those who wish to dive deeper into the CDM, we also provide the following:

- CDM Master Mapping: A Microsoft® Excel® spreadsheet containing3:
 - CIS Controls v8 to ATT&CK mapping: High-Level (to ATT&CK mitigations)
 - CIS Controls v8 to ATT&CK mapping: Low-Level (to ATT&CK (sub-)techniques)
- ATT&CK Visualizations: JavaScript Object Notation (JSON) files for each attack type, as well as one for all attack types combined⁴
 - A guide on how to visualize these JSON files
- CDM Attack Cards: IG1 Safeguards to implement for each attack type and all attack types combined (in terms of effectiveness)⁵
- CDM Reverse Mapping: A reverse mapping that provides which ATT&CK (sub-) techniques can be defended by implementing one or more CIS Safeguards, as well as which attack type(s) they defend against⁶.

Please join our CDM Community on CIS WorkBench to take advantage of these and other great resources.

³ Found here: Note that a CIS WorkBench account is needed to obtain these files (free). Microsoft* Excel* workbooks are in database-friendly formats.

⁴ Found here: Note that a CIS WorkBench account is needed to obtain these files (free). JSON files can be imported into MITRE's ATT&CK Navigator tool here

⁵ Found here: Note that a CIS WorkBench account is needed to obtain this file (free).

⁶ Found here: Note that a CIS WorkBench account is needed to obtain this file (free).

Security Function Analysis

ATT&CK Mitigations

The first step in determining the security function of the CIS Safeguards is to map the CIS Safeguards to the ATT&CK mitigations. Note that a single Safeguard can map to multiple ATT&CK mitigations and vice versa.

All CIS Safeguards

Overall, the CIS Safeguards mapped to 93% of ATT&CK mitigations, or 39 out of 42. Table 1 below shows the top 10 ATT&CK mitigations that mapped to CIS Safeguards. For example, "M1047–Audit" is mapped to 23 CIS Safeguards, indicating that those 23 Safeguards perform some form of auditing activity, and therefore have the ability to defend against one or more ATT&CK (sub-)techniques that are contained within the Audit mitigation. Analysis found that "M1047–Audit" ranked #1 again this year with the most mappings, emphasizing the importance of implementing best practices, such as secure configurations (e.g., CIS Benchmarks), and auditing those configurations.

Table 1. Number of CIS Safeguards mapped to the top 10 ATT&CK mitigations

Rank	ATT&CK Mitigation ID	ATT&CK Mitigation Name	Number of ATT&CK Mitigations Mapped to CIS Safeguards
1	M1047	Audit	23
2	M1051	Update Software	19
3	M1016	Vulnerability Scanning	17
4	M1018	User Account Management	16
5	M1026	Privileged Account Management	15
6	M1042	Disable or Remove Feature or Program	14
7	M1029	Remote Data Storage	14
8	M1035	Limit Access to Resource Over Network	13
9	M1037	Filter Network Traffic	12
10	M1030	Network Segmentation	10

IG1 CIS Safeguards

In analyzing IG1 Safeguards, it was found that they mapped to 83% of ATT&CK mitigations. Additionally, eight of the ATT&CK mitigations shown in Table 1 above remained in the top 10 for IG1. However, others, such as "M1053–Data Backup," M1017–User Training," and "M1022–Restrict File and Directory Permissions," moved up in rank (since IG1 only focuses on a subset of the CIS Safeguards), as shown below in Table 2.

Table 2. Number of IG1 CIS Safeguards mapped to the top 10 ATT&CK mitigations

Rank	ATT&CK Mitigation ID	ATT&CK Mitigation Name	Number of ATT&CK Mitigations Mapped to CIS Safeguards
1	M1047	Audit	12
2	M1018	User Account Management	11
3	M1029	Remote Data Storage	9
4	M1026	Privileged Account Management	9
5	M1017	User Training	6
6	M1051	Update Software	6
7	M1035	Limit Access to Resource Over Network	6
8	M1030	Network Segmentation	5
9	M1022	Restrict File and Directory Permissions	5
10	M1053	Data Backup	4

Unmapped

Although the majority of ATT&CK mitigations had at least one mapping to a CIS Safeguard, a few mitigations were left unmapped, as shown below in Table 3. For v2.0, we are excited to include an ATT&CK mitigation that was not mapped in v1.0, "M1040–Behavior Prevention on Endpoint." Prior to CIS Controls v8, Safeguards relating to Endpoint Detection and Response (EDR) had not been included. However, we recognized the importance of including Safeguards surrounding EDR in an effort to keep up with the ever-changing threat landscape.

With the addition of CIS Safeguards such as, "13.2–Deploy a Host-Based Intrusion Detection Solution" and "13.7–Deploy a Host-Based Intrusion Prevention Solution," we were able to successfully map to the ATT&CK mitigation, "M1040–Behavior Prevention on Endpoint." We also recognized the addition of an ATT&CK mitigation that was not on this list in v1.0, "M1020–SSL/TLS Inspection." This was due to the retirement of CIS Safeguard (v7.1) 12.10, "Decrypt Network Traffic at Proxy" in v8 of the CIS Controls. While important, we felt that decryption of network traffic may not be appropriate, feasible, or attainable for some enterprises. Additionally, in some cases, privacy requirements/regulations may contradict or interfere with guidance to decrypt all network traffic.

Table 3. ATT&CK mitigations with no mapping to CIS Safeguards

ATT&CK Mitigation ID	ATT&CK Mitigation Name	ATT&CK Mitigation Description
M1019	Threat Intelligence Program	A threat intelligence program helps an organization generate their own threat intelligence information and track trends to inform defensive priorities to mitigate risk.
M1020	SSL/TLS Inspection	Break and inspect SSL/TLS sessions to look at encrypted web traffic for adversary activity.
M1055	Do Not Mitigate	This category is to associate techniques that mitigation might increase risk of compromise and therefore mitigation is not recommended.

ATT&CK (Sub-)Techniques

All CIS Safeguards

In addition to analyzing at the ATT&CK mitigation level, we also analyzed the mappings at an ATT&CK (sub-)technique level, providing us with a more granular and clarified dataset for analysis. Shown below in Table 4 is a listing of ATT&CK (sub-)techniques that had the highest number of CIS Safeguard mappings. At first glance, it may appear that in order to defend against a specific ATT&CK (sub-)technique, it would require the implementation of a significant number of CIS Safeguards. However, this is not the case. Since multiple CIS Safeguards can defend against the same ATT&CK (sub-)technique, this provides enterprises with multiple options to select the Safeguards that are most appropriate to implement for their environment. Multiple Safeguards mapping to an ATT&CK (sub-)technique also helps to illustrate defense-in-depth.

"T1021.001-Remote Desktop Protocol (RDP)" had the highest number of CIS Safeguards mapped to it, emphasizing the potential that the CIS Safeguards can provide in protecting RDP. Get the CIS RDP guide here.

Overall, out of 446 ATT&CK (sub-)techniques assigned to an ATT&CK mitigation, 383, or 86%, can be defended against through implementation of all CIS Safeguards. Additional analysis found that almost half of the ATT&CK (sub-)techniques, shown in Table 4 below, related to the exploitation of an external application, protocol, etc., emphasizing the importance of securing externally-facing systems. It also is worth noting that ATT&CK sub-technique "T1021.001–Remote Desktop Protocol (RDP)" had the highest number of CIS Safeguards mapped to it, demonstrating the potential that the CIS Safeguards can provide in protecting RDP. Recently, CIS released a guide about RDP, a protocol attackers often exploit, and which direct mitigations can be implemented to defend against an RDP-based attack.

Table 4. ATT&CK (sub-)techniques that had the highest number of CIS Safeguard mappings

Rank	ATT&CK (Sub-) Technique ID	ATT&CK (Sub-)Technique Name	Number of CIS Safeguards Mapped to an ATT&CK (Sub-)Technique
1	T1021.001	Remote Desktop Protocol	42
2	T1563.002	RDP Hijacking	41
3	T1552	Unsecured Credentials	39
4	T1072	Software Deployment Tools	38
5	T1210	Exploitation of Remote Services	35
6	T1190	Exploit Public-Facing Application	33
7	T1059	Command and Scripting Interpreter	30
8	T1557	Man-in-the-Middle	29
9	T1530	Data from Cloud Storage Object	28
10	T1574	Hijack Execution Flow	27
11	T1003	OS Credential Dumping	25
12	T1133	External Remote Services	24
13	T1543.002	Systemd Service	24
14	T1563	Remote Service Session Hijacking	24
15	T1059.001	PowerShell	24
16	T1021.005	VNC	23
17	T1542.005	TFTP Boot	23
18	T1548	Abuse Elevation Control Mechanism	22
19	T1602.001	SNMP (MIB Dump)	22
20	T1543	Create or Modify System Process	22

IG1 CIS Safeguards

Overall, out of the ATT&CK (sub-)techniques assigned to an ATT&CK mitigation (446), IG1 Safeguards defend against 74% (332). This shows that by implementing IG1 alone, enterprises can defend against the majority of ATT&CK (sub-)techniques. Additionally, it is worth noting that some IG1 Safeguards are foundational and process-oriented, such as enterprise and software asset management. These foundational Safeguards may not be included in the ATT&CK model as defensive measures, due to the technical nature of the ATT&CK framework; however, many are pre-requisites to successfully implement the more technical Safeguards that do map to ATT&CK.

Table 5. ATT&CK (sub-)techniques that had the highest number of IG1 Safeguard mappings

Rank	ATT&CK (Sub-) Technique ID	ATT&CK (Sub-)Technique Name	Number of CIS Safeguards Mapped to an ATT&CK (Sub-)Technique
1	T1552	Unsecured Credentials	22
2	T1021.001	Remote Desktop Protocol	21
3	T1543.002	Systemd Service	20
4	T1563.002	RDP Hijacking	20
5	T1072	Software Deployment Tools	20
6	T1530	Data from Cloud Storage Object	19
7	T1530.006	Systemd Timers	18
8	T1574	Hijack Execution Flow	16
9	T1078.004	Cloud Accounts	16
10	T1543	Create or Modify System Process	16
11	T1601.002	Patch System Image	15
12	T1548	Forge Web Credentials	15
13	T1601	Downgrade System Image	15
14	T1569	Abuse Elevation Control Mechanism	15
15	T1098	Modify System Image	15
16	T1003	System Services	15
17	T1053.002	Account Manipulation	14
18	T1599	OS Credential Dumping	14
19	T1021.002	At (Windows)	14
20	T1599.001	Domain Policy Modification	14

Unmapped

While the majority of the ATT&CK (sub-)techniques can be defended against by one or more CIS Safeguards, 63 ATT&CK (sub-)techniques did not map back to a CIS Safeguard. Many of these ATT&CK (sub-)techniques are listed under ATT&CK mitigations that did not map to a CIS Safeguard, such as "M1055–Do Not Mitigate," "M1020–SSL/TLS Inspection," and "M1019–Threat Intelligence Program." Several ATT&CK (sub-)techniques from "M1056–Pre-compromise" were also among those that were unmapped. A listing of these ATT&CK (sub-)techniques can be found in Appendix D of this guide.

Additionally, the 84 ATT&CK (sub-)techniques with no assignment to an ATT&CK mitigation can be found in Appendix E of this guide. Our assessment of these ATT&CK (sub-)techniques found that the majority are used in LotL attacks, where an attacker uses existing tools and tactics on the targeted system or network to carry out an attack, rather than exploit a specific system or control weakness; these attacks are therefore difficult to defend against.

CIS Safeguards

All CIS Safeguards

In addition to the analysis above, we also analyzed the reverse—which CIS Safeguards defend against one or more ATT&CK (sub-)techniques. Our mapping revealed that out of 153 CIS Safeguards, 68% defend against one or more ATT&CK (sub-)techniques, with 19 CIS Safeguards defending against 50 or more ATT&CK (sub-)techniques, as shown below in Table 6.

We can see that CIS Safeguard "4.1–Establish and Maintain a Secure Configuration Process" defends against the highest number of ATT&CK (sub-)techniques, once again reinforcing the importance of secure configurations, such as those contained within the CIS Benchmarks.

Table 6. CIS Safeguards that had the highest number of mapped ATT&CK (sub-)techniques

Rank	CIS Safeguard	CIS Safeguard Title	Number of ATT&CK (Sub-) Techniques Defended by a CIS Safeguard	IG1	IG2	IG3
1	4.1	Establish and Maintain a Secure Configuration Process	342	√	√	✓
2	6.1	Establish an Access Granting Process	217	✓	✓	✓
3	6.2	Establish an Access Revoking Process	217	✓	✓	✓
4	18.3	Remediate Penetration Test Findings	214		√	✓
5	6.8	Define and Maintain Role-Based Access Control	206			✓
6	4.7	Manage Default Accounts on Enterprise Assets and Software	188	✓	√	√
7	18.5	Perform Periodic Internal Penetration Tests	187			✓
8	5.4	Restrict Administrator Privileges to Dedicated Administrator Accounts	164	√	√	✓
9	5.3	Disable Dormant Accounts	155	√	√	✓
10	2.5	Allowlist Authorized Software	101		√	✓
11	2.7	Allowlist Authorized Scripts	81			✓
12	3.3	Configure Data Access Control Lists	75	√	√	✓
13	4.2	Establish and Maintain a Secure Configuration Process for Network Infrastructure	73	✓	√	✓
14	2.3	Address Unauthorized Software	67	√	√	✓
15	4.4	Implement and Manage a Firewall on Servers	60	√	√	✓
16	4.8	Uninstall or Disable Unnecessary Services on Enterprise Assets and Software	54		√	✓
17	13.8	Deploy a Network Intrusion Prevention Solution	53			✓
18	13.3	Deploy a Network Intrusion Detection Solution	53		√	✓
19	12.2	Establish and Maintain a Secure Network Architecture	51		√	✓
20	5.2	Use Unique Passwords	47	√	√	✓

IG1 CIS Safeguards

Overall, it was found that 86% of IG1 Safeguards defend against one or more ATT&CK (sub-)techniques, with many defending against 60 or more, as shown below in Table 7. This reinforces that implementing a relatively small set of defensive actions (IG1) provides an enterprise with the ability to defend against a wide array of potential attacks.

As previously mentioned, some of the IG1 Safeguards do not directly map to the ATT&CK framework. These are considered foundational Safeguards, such as keeping inventory of enterprise assets and software (CIS Controls 1 and 2) and implementing logging (CIS Control 8). These foundational Safeguards are important, since without them, there is no way of knowing which devices are, or could be, compromised.

These foundational Safeguards may not be included in the ATT&CK model as defensive measures; however, they must be implemented before more technical Safeguards that do map to ATT&CK can be properly implemented.

Table 7. IG1 Safeguards that had the highest number of mapped ATT&CK (sub-)techniques

Rank	CIS Safeguard	Title	Number of ATT&CK (Sub-) Techniques Defended by a CIS Safeguard
1	4.1	Establish and Maintain a Secure Configuration Process	342
2	6.1	Establish an Access Granting Process	217
3	6.2	Establish an Access Revoking Process	217
4	4.7	Manage Default Accounts on Enterprise Assets and Software	188
5	5.4	Restrict Administrator Privileges to Dedicated Administrator Accounts	164
6	5.3	Disable Dormant Accounts	155
7	3.3	Configure Data Access Control Lists	75
8	4.2	Establish and Maintain a Secure Configuration Process for Network Infrastructure	73
9	2.3	Address Unauthorized Software	67
10	4.4	Implement and Manage a Firewall on Servers	60
11	5.2	Use Unique Passwords	47
12	6.5	Require MFA for Administrative Access	33
13	6.4	Require MFA for Remote Network Access	31
14	7.1	Establish and Maintain a Vulnerability Management Process	27
15	7.2	Establish and Maintain a Remediation Process	27
16	11.3	Protect Recovery Data	27
17	14.1	Establish and Maintain a Security Awareness Program	25
18	7.3	Perform Automated Operating System Patch Management	24
19	11.4	Establish and Maintain an Isolated Instance of Recovery Data	20
20	6.3	Require MFA for Externally-Exposed Applications	17

Unmapped

In total, 49 CIS Safeguards were not mapped to ATT&CK, only eight of which were IG1 Safeguards. As previously mentioned, some of these unmapped Safeguards are foundational Safeguards, such as "CIS Control 8: Audit Log Management" and "CIS Control 3: Data Protection." Other Safeguards, such as those in "CIS Control 15: Service Provider Management" and "CIS Control 17: Incident Response Management," as examples, are also not specifically addressed by any of the ATT&CK mitigations in the ATT&CK framework, and therefore are unable to be mapped.

A list of unmapped CIS Safeguards can be found in Appendix F of this guide.

Data Source Analysis

After determining the security function of the CIS Safeguards, based on their mapping to ATT&CK, we then determined the top five attack types and attack patterns. First, we selected the most common attack types that enterprises should defend against, through reviewing various data sources. Attack types are the high-level grouping of attacks. For v2.0, they are: Malware, Ransomware, Web Application Hacking, Insider Privilege and Misuse, and Targeted Intrusions.

Following this, we used additional data sources to determine the attack pattern—the set of ATT&CK (sub-)techniques required to execute the attack. Attack patterns are constructed with the most recent attacker techniques and can change from year to year. Lastly, we leveraged the master mapping to ATT&CK, to perform a reverse mapping back to the CIS Safeguards, which allowed us to analyze the security value of the Safeguards.

Data Types

Each year, multiple data sources (i.e., industry threat data sources) are published that contain various metrics, such as top malware, top ransomware, top attack types, etc. The data behind these reports contains valuable information and can be categorized into one of the following data types, all of which the CDM leverages:

- Self-Reported Data: Analysts and researchers are employed to contact companies and obtain first-hand information about how breaches occurred.
- Sensor Data: Vendors offering network and other types of cybersecurity monitoring or prevention services have access to raw network and other types of data.
- Incident Response Data: Created from incident response activities, the data obtained here is often rich and extremely granular; however, it may be unstructured and is provided in narrative form.
- Product Usage Data: Vendors offering software-as-a-service and cloud-based products may gather security-relevant data for customers using their products.
- Open-Source Intelligence: Information available from sources such as intelligence reports, publicly-available incident response reports, and other security-related publications.

In addition to data type, the longevity of the report and access to underlying datasets are also taken into consideration.

If you're a vendor with data that fits into one or more categories, please contact us at controlsinfo@cisecurity.org.

Attack Type Data Sources

We evaluated multiple data sources to determine the top five attack types, as shown below in Table 8.

Table 8. Attack type data sources

Data Source	Publish Date	Туре	Longevity	CIS Access to Underlying Data
Verizon DBIR	May 19, 2020	Self-reported data, Sensor data, Incident response data	2008	No ⁷
IBM X-Force Threat Intelligence Index	February 24, 2021	Sensor data, Incident response data	2017	No
ENISA Threat Landscape - The Year in Review	October 20, 2020	Open-source intelligence	2012	No
CrowdStrike Services Cyber Front Lines Report	2020	Sensor data, Incident response data, Product usage data	2020	No
Akamai The State of the Internet: A Year in Review	2020	Sensor data, Product usage data	2008	No

Several sources were reviewed and some carried a heavier weight, such as the 2020 Verizon DBIR, since their dataset encompasses several different data sources, both public and private, and is based on multiple data types. As data sources may change from time to time, we are confident that our analysis and the data that backs it provides enterprises with the knowledge they need to put forth a robust security program and protect against the most pervasive cyber threats.

Top Attack Types

The top attack types for v2.0 are shown below in Table 9, in order of prevalence. The attack types remain unchanged from v1.0; however, the rank has changed, based on the cumulative analysis of the various data sources listed above in Table 8.

With these attack types, there is likely to be some overlap (e.g., a nation-state attacker that is working as an insider, a targeted intrusion attack that uses malware). However, every effort is made to group these top attack types into categories that have valuable data sources to determine their respective attack patterns. Therefore, some top attack types, such as general, non-specific categories (e.g., everything else, other, etc.) or a category that cannot be easily mitigated (e.g., Denial of Service (DoS), stolen assets, etc.), were not considered.

Table 9. Top 5 attack types for CDM v2.0

Rank	Attack Type	Change from CDM v1.0
1	Malware	Moved up in rank
2	Ransomware	Moved up in rank
3	Web Application Hacking	Moved down in rank
4	Insider Privilege and Misuse	Moved down in rank
5	Targeted Intrusions	Rank remained the same

The following sections briefly describe each attack type and the justification for inclusion.

⁷ However, the Vocabulary for Event Recording and Incident Sharing (VERIS) Community Database (VCDB) is a random sample of only public breaches and is available at: https://github.com/vz-risk/VCDB. This data is a part of the larger DBIR dataset.

Malware

Malware ranked #1 in ENISA's The Year in Review 2020 report. Malware continues to plague enterprises year after year. The Verizon DBIR describes malware as "...the common type of commodity malware that everyone has probably seen on some email claiming to be a fax or a missed delivery package. These incidents and breaches tend to be opportunistic and financially motivated." (Verizon DBIR, 2020). The DBIR refers to this attack type as "crimeware," which includes malware that did not fall into another attack type. According to the 2020 DBIR, malware ranked #4 in breaches and #2 in incidents (Verizon DBIR, 2020). Malware continues to affect enterprises globally, as malware ranked #1 in ENISA's The Year in Review 2020 report (ENISA, 2020). Each month, the Multi-State Information Sharing and Analysis Center® (MS-ISAC®) publishes the Top 10 Malware impacting SLTTs, a data source also used in the CDM.

Ransomware

Ransomware involves the encryption of files on a system or network, rendering them useless until a decryption key is used or backups are restored. Ransomware has taken its toll across all sectors over the years, and the threat continues to grow into 2021. According to the 2020 DBIR, 27% of malware incidents were categorized as ransomware (Verizon DBIR, 2020). Due to the differences in attacker tactics, techniques, and procedures (TTPs) and motives, we separated Ransomware from the Malware attack type. According to IBM®'s 2021 X-Force Threat Intelligence Index report, ransomware ranked as their number one threat type, totaling 23% of their X-Force® caseload (IBM X-Force, 2021)¹¹¹. Additionally, X-Force estimated a staggering profit of \$123 million from just one of the ransomware groups, Sodinokibi (aka REvil) (IBM X-Force, 2021). According to Bitdefender®'s 2020 Mid-Year Threat Landscape Report, there was a 715.08% increase of ransomware reports across the globe (Bitdefender, 2020)¹¹¹. These findings stress the importance of protecting against ransomware attacks, as no one sector is immune.

According to Bitdefender's 2020 Mid-Year Threat Landscape Report, there was a 715.08% increase in ransomware reports across the globe.

Web Application Hacking

The DBIR defines this as "anything that has a web application as the target." Over 80% of breaches involved some type of web application hacking, according to the 2020 Verizon DBIR. Additionally, web applications were ranked #1 for breaches and #4 for incidents (Verizon DBIR, 2020). When it comes to the cloud, the report also states that 73% of the time, cloud-based breaches attacked an email or web application server, stressing the importance of protecting both on-premises and cloud assets (Verizon DBIR, 2020). It should come as no surprise that externally-facing applications are much more vulnerable to an attack, especially for those with misconfigurations and protocols that are left open and unprotected. At the top of the list for web application attacks are "Injections" (e.g., SQL, NoSQL, etc.) and "Crosssite Scripting (XSS)," according to the OWASP® Top 10½ and 2020 CWE Top 25¼, respectively.

- 8 2020 Verizon Data Breach Investigations Report (DBIR) https://enterprise.verizon.com/resources/reports/dbir/2020/introduction/
- 9 ENISA Threat Landscape-The Year in Review (Published October 20, 2020) https://www.enisa.europa.eu/publications/year-in-review
- 10 IBM X-Force Threat Intelligence Index 2021 https://www.ibm.com/security/data-breach/threat-intelligence
- 11 Bitdefender Mid-Year Threat Landscape Report 2020 https://www.bitdefender.com/files/News/CaseStudies/study/366/Bitdefender-Mid-Year-Threat-Landscape-Report-2020.pdf
- 12 OWASP Top 10 https://owasp.org/www-project-top-ten/
- 13 2020 CWE Top 25 https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

Insider Privilege and Misuse

Insider Privilege and Misuse can be defined as incidents that are intentionally carried out by an insider, according to the 2020 Verizon DBIR. These are incidents where the insider has malicious intent to cause harm. According to the 2021 IBM X-Force Threat Intelligence Report, "25% of attacks against transportation in 2020 involved a malicious insider or misconfiguration." Additionally, out of the 13% of insider threat incidents in the industrial control systems (ICS) and operational technology (OT) fields, 60% involved insiders with malicious intent (IBM X-Force, 2021).

Targeted Intrusions

This attack type includes nation-state activity or state-affiliated actors that are looking for the crown jewels, such as an enterprise's data (Verizon DBIR, 2020). Additionally, the intent of Targeted Intrusions differs from other patterns, focusing on social, economic, and political gain. The 2020 DBIR states that these types of attacks typically focus on the social and malware vectors of the VERIS framework, with 81% using phishing and 92% using malware (Verizon DBIR, 2020).

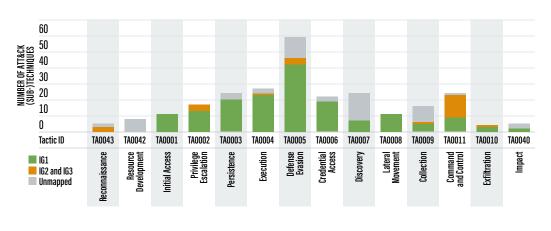
Attack Pattern Data Sources

Once the top attack types were determined, data sources were selected in a similar fashion to create comprehensive attack patterns. Attack patterns are the selection of ATT&CK (sub-)techniques that are used in a given attack type. We focus on the most common and recently used techniques to form the attack patterns, as patterns can and will change from year to year. Several data sources were used to create the attack patterns, which can be seen in Table 10 below.

Table 10. Data sources used to create attack patterns (for each attack type)

Attack Type	Attack Pattern Data Source
Malware	 Multi-State Information Sharing and Analysis Center® (MS-ISAC®) Top 10 Malware CrowdStrike 2021 Global Threat Report¹⁴ IBM X-Force Threat Intelligence Index 2021 ESET Threat Report Q4 2020¹⁵ Check Point 2021 Cyber Security Report¹⁶
Ransomware (as a subset of Malware)	 Multi-State Information Sharing and Analysis Center (MS-ISAC) Data CrowdStrike 2021 Global Threat Report IBM X-Force Threat Intelligence Index 2021 Group-IB Ransomware Uncovered 2020–2021¹⁷ ESET Threat Report Q4 2020
Web Application Hacking	• OWASP Top 10 • 2020 CWE Top 25
Insider Privilege and Misuse	 Verizon Insider Threat Report 2019¹⁸ Securonix 2020 Insider Threat Report¹⁹ G-Research Introducing the Insider Attack Matrix²⁰
Targeted Intrusions	 CrowdStrike 2021 Global Threat Report CISA SolarWinds and Active Directory/M365 Compromise Threat Report²¹

- 14 CrowdStrike 2021 Global Threat Report https://www.crowdstrike.com/resources/reports/global-threat-report/
- 15 ESET Threat Report Q4 2020 https://www.welivesecurity.com/wp-content/uploads/2021/02/ESET_Threat_Report_Q42020.pdf
- 16 Check Point 2021 Cyber Security Report https://www.checkpoint.com/pages/cyber-security-report-2021/
- 17 Group-IB Ransomware Uncovered 2020-2021 https://www.group-ib.com/resources/threat-research/ransomware-2021.html
- 18 Verizon Insider Threat Report 2019 https://enterprise.verizon.com/resources/reports/insider-threat-report/
- 19 Securonix 2020 Insider Threat Report https://www.securonix.com/resources/2020-insider-threat-report/
- 20 G-Research Introducing the Insider Attack Matrix https://www.gresearch.co.uk/article/introducing-the-insider-attack-matrix/
- 21 CISA SolarWinds and Active Directory/M365 Compromise Threat Report: https://us-cert.cisa.gov/sites/default/files/publications/Supply_Chain_Compromise_Detecting_APT_Activity_from_known_TTPs.pdf


Security Value Analysis

There are several different ways to analyze the security value of the CIS Safeguards against the top five attack types. The next few sections provide an analysis of how well each attack pattern²² is covered by the CIS Safeguards, against ATT&CK tactics and ATT&CK (sub-)techniques. Note that for the ATT&CK tactic analysis, multiple ATT&CK (sub-)techniques can appear across multiple ATT&CK tactics.

Malware

Shown below in Figure 6 is the Malware attack pattern analysis, by IG, across all ATT&CK tactics. Overall, nine of the 14 ATT&CK tactics had 75% or more coverage. Table 11 shows the percentage of Malware ATT&CK (sub-)techniques, within each ATT&CK tactic, that CIS Safeguards defend against.

Figure 6. Malware attack pattern coverage against CIS Safeguards (by IG) across ATT&CK tactics

Table 11. Percentage of ATT&CK (sub-)techniques that can be defended against for the Malware attack pattern

Tactic ID	TA0043	TA0042	TA0001	TA0002	TA0003	TA0004	TA0005	TA0006	TA0007	TA0008	TA0009	TA0011	TA0010	TA0040
	60%	0%	100%	100%	83%	89%	78 %	86%	29%	100%	38%	96%	100%	40%

94% of ATT&CK (sub-) techniques in the Malware attack pattern can be defended against through implementation of CIS Safeguards. The Malware attack pattern mapped to 209 unique ATT&CK (sub-)techniques²³, with CIS Safeguards defending against 152 of them. This number may seem low; however, out of the 209 ATT&CK (sub-)techniques, only 162 were assigned to an ATT&CK mitigation, which indicates the highest possible number of techniques that can be defended against across any security framework. Taking this into consideration, it was found that 94% of ATT&CK (sub-)techniques in the Malware attack pattern can be defended against through implementation of the CIS Safeguards, as shown below in Table 12.

Furthermore, out of the 162, 125 ATT&CK (sub-)techniques, or 77%, can be defended through implementation of IG1. This reinforces the security value that IG1 Safeguards can bring to an enterprise to defend against malware.

Table 12. Malware attack pattern data table

# of Mapped ATT&CK (Sub-)Techniques	# of ATT&CK (Sub-) Techniques Assigned to an ATT&CK Mitigation	# of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	# of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards
209	162	152	94%	125	77%

- 22 The set of ATT&CK (sub-)techniques required to execute an attack.
- 23 Out of 530 total ATT&CK (sub-)techniques

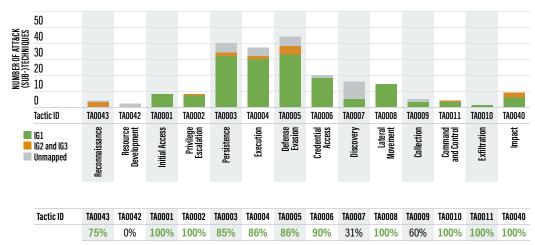
Ransomware

Analysis found that 75% or more of the ATT&CK (sub-)techniques in 10 of the 14 ATT&CK tactics for the Ransomware attack pattern can be defended against through implementation of the CIS Safeguards, as shown below in Figure 7 and Table 13.

Figure 7. Ransomware attack pattern coverage against CIS Safeguards (by IG) across ATT&CK tactics

Table 13. Percentage of ATT&CK (sub-)techniques that can be defended against for the Ransomware attack pattern

The Ransomware attack pattern mapped to a total of 229 unique ATT&CK (sub-) techniques (Table 14). Out of the 229, 182 ATT&CK (sub-)techniques were assigned an ATT&CK mitigation, indicating the highest possible number of techniques that can be defended against. Factoring this into the analysis, it was found that CIS Safeguards defend against 92% of the ATT&CK (sub-)techniques. Additionally, IG1 alone defend against 78% of Ransomware ATT&CK (sub-)techniques.


Table 14. Ransomware attack pattern data table

# of Mapped ATT&CK (Sub-)Techniques	# of ATT&CK (Sub-)Techniques Assigned to an ATT&CK Mitigation	# of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	% of ATT&CK (Sub-)Techniques Defended by the CIS Safeguards	# of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards
229	182	167	92%	142	78%

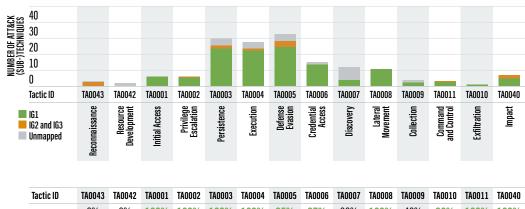
Web Application Hacking

Analysis of the Web Application Hacking attack pattern found that the CIS Safeguards defend against 75% or more ATT&CK (sub-)techniques in 11 of the 14 ATT&CK tactics, with six of those ATT&CK tactics having 100% coverage, as shown below in Figure 8 and Table 15.

Figure 8. Web Application Hacking attack pattern coverage against CIS Safeguards (by IG) across ATT&CK tactics

Table 15. Percentage of ATT&CK (sub-)techniques that can be defended against for the Web Application Hacking attack pattern

In total, 143 unique ATT&CK (sub-)techniques were mapped to the Web Application Hacking attack pattern (Table 16). Of the 143, 120 ATT&CK (sub-)techniques were assigned to an ATT&CK mitigation and 117, or 98%, are defended through implementation of the CIS Safeguards. Of the 120, IG1 defends against 86% of the ATT&CK (sub-)techniques in this pattern.


Table 16. Web Application Hacking attack pattern data table

# of Mapped ATT&CK (Sub-)Techniques	# of ATT&CK (Sub-)Techniques Assigned to an ATT&CK Mitigation	# of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	# of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards
143	120	117	98%	103	86%

Insider Privilege and Misuse

Analysis of the Insider Privilege and Misuse attack pattern found that the CIS Safeguards defend against 85% or more of the ATT&CK (sub-)techniques in 10 of the 14 ATT&CK tactics, seven of which have 100% coverage (shown in Figure 9 and Table 17 below).

Figure 9. Insider Privilege and Misuse attack pattern coverage against CIS Safeguards (by IG) across ATT&CK tactics

Table 17. Percentage of ATT&CK (sub-)techniques that can be defended against for the Insider Privilege and Misuse attack pattern

 0%
 0%
 100%
 100%
 100%
 85%
 87%
 30%
 100%
 40%
 90%
 100%
 100%

Overall, 149 unique ATT&CK (sub-)techniques mapped to the Insider Privilege and Misuse attack pattern, with 112 having an assignment to an ATT&CK mitigation (Table 18). Analysis found that the CIS Safeguards defend against 90% of Insider Privilege and Misuse ATT&CK (sub-)techniques assigned to an ATT&CK mitigation, with IG1 defending against 86% of ATT&CK (sub-)techniques.

Table 18. Insider Privilege and Misuse attack pattern data table

# of Mapped ATT&CK (Sub-)Techniques	# of ATT&CK (Sub-)Techniques Assigned to an ATT&CK Mitigation	# of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	# of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards
149	112	101	90%	96	86%

Targeted Intrusions

In 10 of the 14 ATT&CK tactics, the CIS Safeguards defend against 75% or more ATT&CK (sub-)techniques associated with the Targeted Intrusions attack pattern, with five of those ATT&CK tactics having 100% coverage (shown in Figure 10 and Table 19 below).

Figure 10. Targeted Intrusions attack pattern coverage against CIS Safeguards (by IG) across ATT&CK tactics

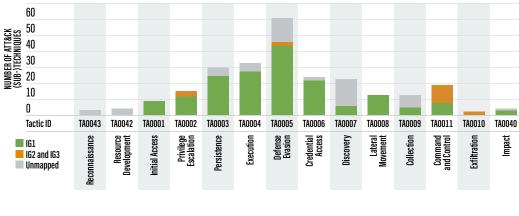


Table 19. Percentage of ATT&CK (sub-)techniques that can be defended against for the Targeted Intrusions attack pattern

Tactic ID	TA0043	TA0042	TA0001	TA0002	TA0003	TA0004	TA0005	TA0006	TA0007	TA0008	TA0009	TA0010	TA0011	TA0040
	0%	0%	100%	100%	83%	85%	75 %	92%	26%	100%	38%	100%	100%	75%

Overall, 197 unique ATT&CK (sub-)techniques were mapped to the Targeted Intrusions attack pattern (Table 20). Of the 197, 154 were assigned to an ATT&CK mitigation. As a result, CIS Safeguards defend against 95% of the Targeted Intrusions ATT&CK (sub-)techniques, with IG1 defending against 83%.

Table 20. Targeted Intrusions attack pattern data table

# of Mapped ATT&CK (Sub-)Techniques	# of ATT&CK (Sub-)Techniques Assigned to an ATT&CK Mitigation	# of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by the CIS Safeguards	# of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards	% of ATT&CK (Sub-) Techniques Defended by IG1 CIS Safeguards
197	154	146	95%	128	83%

Summary

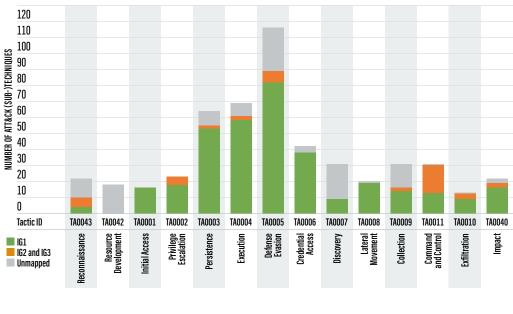

One of the goals of the CDM is to determine the security value of IG1. We determined that an enterprise implementing IG1 can defend itself against the top five attack types. Overall, IG1 defends against 77% or more of ATT&CK (sub-)techniques²⁴. Implementing all of the CIS Safeguards defends against 90% or more of the ATT&CK (sub-)techniques. Shown in Table 21 below are the individual percentages for each attack type, broken down by IG1 Safeguards and all CIS Safeguards.

Table 21. Overall security value analysis

Attack Type	% of ATT&CK (Sub-)Techniques Defended Against by IG1 CIS Safeguards	% of ATT&CK (Sub-)Techniques Defended Against by CIS Safeguards
Malware	77%	94%
Ransomware	78%	92%
Web Application Hacking	86%	98%
Insider Privilege and Misuse	86%	90%
Targeted Intrusions	83%	95%

We also looked at CIS Safeguard coverage for the superset of ATT&CK (sub-) techniques used across all five attack types. Shown below in Figure 11 is the number of ATT&CK (sub-)techniques, by ATT&CK tactic and IG, that the CIS Safeguards defend against. When analyzed, it was found that the CIS Safeguards defend against 77% or more of the ATT&CK (sub-)techniques in 10 of the 14 ATT&CK tactics, as shown in Table 22 below. Also of note, was a particularly low percentage in ATT&CK tactics: TA0007, TA0009, TA0042, and TA0043. This is due to the majority of these ATT&CK (sub-)techniques having no assignment to an ATT&CK mitigation, or assigned, but difficult to defend against (e.g., LotL techniques).

Figure 11. CIS Safeguard coverage (by IG) across all five attack types combined

Table 22. Data table showing number of ATT&CK (sub-) techniques mapped across all five attack types combined

	Tactic ID	TA0043	TA0042	TA0001	TA0002	TA0003	TA0004	TA0005	TA0006	TA0007	TA0008	TA0009	TA0010	TA0011	TA0040
five		45%	0%	100%	100%	86%	88%	77%	90%	29%	95%	52%	92%	97%	86%

24 Assigned to an ATT&CK mitigation

CDM data also allowed us to look at a smaller subset of ATT&CK (sub-)techniques that apply to all five attack types, and the specific CIS Safeguards that can defend against those techniques. Shown below in Figures 12 and 13 are two heat maps, one for IG1 and one for all CIS Safeguards. The checkmarks symbolize that a specific CIS Safeguard can defend against a particular ATT&CK (sub-)technique. The varying "temperatures" of the charts tell us that the higher the total, the higher the effectiveness. This is yet another way that our analysis can be used to determine the effectiveness of implementing the CIS Safeguards in terms of defending against attacks.

Figure 12. IG1 CIS Safeguard heatmap against the top ATT&CK (sub-)techniques across all attack types

ATT&CK (Sub-)Techniqu	ies Used Across All Attack Patterns		IG1 C	IS Safe	guard	s (In o	rder of	effec	ivenes	s)																			
(Sub-)Technique ID	(Sub-)Technique Name		4.1	4.7	5.3	6.1	6.2	5.4	6.4	6.5	5.2	2.3	4.2	4.4	6.3	11.3	3.3	5.1	10.1	10.2	11.4	3.1	3.4	8.1	8.2	8.3	14.1	14.3	TOTA
T1098	Account Manipulation		Ø			Ø	Ø	Ø	Ø	Ø				(14							
T1136	Create Account		Ø	Ø	✓	Ø	Ø	Ø	Ø	Ø			Ø	Ø	Ø	Ø					Ø								13
T1003	OS Credential Dumping		Ø	Ø	Ø	Ø	Ø	Ø			Ø					Ø												(10
T1021.001	Remote Desktop Protocol		✓	✓	✓	Ø	Ø		Ø	✓		Ø	Ø	Ø															10
T1070	Indicator Removal on Host		Ø			Ø	Ø	Ø									(/						(/	(/	(/	(/			10
T1078.002	Domain Accounts			Ø	✓	Ø	Ø	Ø	Ø	Ø	Ø							Ø											9
T1059	Command and Scripting Interpreter		Ø	Ø	Ø	Ø	Ø	Ø				Ø							((9
T1110	Brute Force		Ø	Ø	✓				Ø	Ø	Ø				Ø														7
T1078	Valid Accounts			Ø	Ø	Ø	Ø	Ø			Ø							Ø											7
T1543.003	Windows Service		✓	✓	✓	Ø	Ø	Ø																					6
T1027	Obfuscated Files or Information																		((2
T1127	Trusted Developer Utilities Proxy Execution		Ø									Ø																	2
T1078.001	Default Accounts			Ø							Ø																		2
T1087	Account Discovery		Ø																										1
		TOTAL	10	10	9	9	9	8	5	5	5	3	3	3	3	3	2	2	2	2	2	1	1	1	1	1	1	1	

Figure 13. CIS Safeguard heatmap against the top ATT&CK (sub-)techniques across all attack types

ATT&CK (Sub-)Techniqı	ues Used Across All Attack Patterns	CIS Safe	guards (in	order of	effective	ness) IG	1 IG2	IG3																																			
(Sub-)Technique ID	(Sub-)Technique Name	4.1 4	.7 5.3	6.1 6	.2 5.4	18.3	18.5 6	i.8 4.8	3.12	5.2	6.5	12.8	2.3	2.5 4.2	4.4	6.3 1	.1.3 12.2	2 16.10 2	2.7 3.1	1 3.3 5	.1 5.5	10.1	10.2	11.4	13.2	13.7 16.	1 16.9	2.6	3.1 3.1	3.4	4.10 7	.6 7.7	8.1	8.2	8.3	9 8.10	9.3	9.6	9.7 12.7	13.5 13.	10 14.1	14.3 16	.8 TC
T1021.001	Remote Desktop Protocol	Ø		0		Ø	0	9 0	Ø		0	Ø	Ø	7				Ø													(7							V	⊘ ⊘			2
T1059	Command and Scripting Interpreter	Ø		0		Ø	0	0					Ø	7				Ø				Ø	Ø	✓	Ø	⊘											Ø	Ø	⊘				2
T1098	Account Manipulation	0		0		Ø	Ø	Ø	Ø			Ø		(Ø	V	1		Ø				V																		(2
T1003	OS Credential Dumping	Ø		0		Ø	0	9 0	Ø	 ✓						(7									(· 🕢	1
T1136	Create Account	Ø		0		Ø	Ø		Ø			Ø		(Ø	7	1						Ø																			1
T1070	Indicator Removal on Host	Ø		0					Ø			Ø																	Ø	0			Ø	Ø	Ø								1
T1078	Valid Accounts			0				7		7																(1
T1078.002	Domain Accounts			0					(Ø (0																																1
T1543.003	Windows Service	0		0		Ø	0																																				
T1110	Brute Force	Ø								Ø (0					Ø															Ø												- 1
T1127	Trusted Developer Utilities Proxy Execution	Ø				Ø	Ø	Ø					Ø	7				0	7																								
T1027	Obfuscated Files or Information																					Ø	Ø	 ✓	Ø	⊘																	
T1087	Account Discovery	Ø				Ø	Ø	Ø																																			
T1078.001	Default Accounts									Ø																																	
	TO'	TAL 10 1	.0 9	9	9 8	8	8	7 6	5	5	5 5	4	3	3 3	3	3	3 3	3	2 2	2	2 2	2	2	2 2	2	2 2	2	1	1 1	. 1	1	1 1	1	1	1 1	1	1	1	1 1	1 1	. 1	1 /	

CIS Community Defense Model v2.0

Additionally, we created "attack cards" for each attack type, which provide a list of IG1 CIS Safeguards, in order of effectiveness, along with the corresponding ATT&CK (sub-)techniques that an enterprise will defend against through implementation. These, and other resources, can be found on CIS WorkBench here.

It is worth noting that some ATT&CK (sub-)techniques were mapped to an attack pattern and were assigned an ATT&CK mitigation, but had no mapping to a CIS Safeguard. This list can be found in Appendix H of this guide.

Lastly, some ATT&CK (sub-)techniques were mapped to an attack pattern, but were not assigned to an ATT&CK mitigation (and therefore, had no mapping to a CIS Safeguard). This list can be found in Appendix I of this guide.

Conclusion

CDM v2.0 affirms the prioritization of the CIS Critical Security Controls and Implementation Groups. In particular, CDM data backs the premise that all enterprises should start with essential cyber hygiene, or IG1, as a way to defend against the top five attacks.

In summary, our analysis provides us with three key findings:

- **IG1 provides a viable defense against the top five attack types.** Enterprises achieve a high level of protection and are well-positioned to defend against the top five attack types through implementation of essential cyber hygiene, or IG1. These results strongly reinforce the value of a relatively small number of well-chosen and basic defensive steps (IG1). As such, enterprises should aim to start with IG1 to obtain the highest value and work up to IG2 and IG3, as appropriate.
- Independent of any specific attack type, the CIS Controls are effective at defending against a wide array of attacks. Specifically, the CIS Controls are effective at defending against 86% of the ATT&CK (sub-)techniques found in the ATT&CK framework. More importantly, the Controls are highly effective against the five attack types found in industry threat data. The bottom line is that the CIS Controls, and specifically IG1, are a robust foundation for your cybersecurity program.
- Establishing and maintaining a secure configuration process (CIS Safeguard
 4.1) is a linchpin Safeguard for all five attack types. CIS Safeguard 4.1 is most
 effective in defending against the top five attack types, reinforcing the importance
 of secure configurations, such as those contained within the CIS Benchmarks.

Join our CDM Community on CIS WorkBench to take advantage of these and other great resources.

CIS is dedicated to taking a "community-first" approach. Further resources can be found on our WorkBench site here. Please join our CDM Community on CIS WorkBench to take advantage of these and other great resources, as well as to participate in next year's CDM (v3.0).

CIS Community Defense Model v2.0 Conclusion Page 30

Closing Notes

As a nonprofit organization driven by its volunteers, we are always in the process of looking for new topics and assistance in creating cybersecurity guidance. If you are interested in volunteering and/or have questions, comments, or have identified ways to improve this guide, please write us at: controlsinfo@cisecurity.org.

All references to tools or other products in this guide are provided for informational purposes only, and do not represent the endorsement by CIS of any particular company, product, or technology.

Contact Information

Center for Internet Security 31 Tech Valley Drive East Greenbush, NY 12061 518.266.3460 controlsinfo@cisecurity.org

CIS Community Defense Model v2.0 Closing Notes Page 31

Future Work

The CDM is very much a continuous process, and will change as new threats emerge, new technologies are released, and new data is published. Our work is dynamic, and for all the right reasons. Results of this work feed into the evolution of the CIS Controls, as well as other CIS products and services.

For CDM v3.0, we hope to address the following:

- Additional data sources. Find additional data sources for the top attack types and patterns. This will help to further strengthen our analysis and provide additional insight to other sectors that may not be represented in the current data sources.
- Re-categorization of top attack types. During the writing of v2.0, and after
 analysis was completed, the 2021 Verizon DBIR was published along with their
 new categorization for attack patterns (what we call attack types). These attack
 patterns take a whole new approach to the way that attacks are viewed. We hope
 to further review the DBIR categorization schemas, as well as other data sources,
 to continually improve our categorization of attack types.
- More specific analyses. As we evolve with future versions of the CDM, our analysis will seek to perform even more in-depth analyses, to answer questions such as: "What is the specific 'point' in an attack where it can be thwarted completely?" and "What are the minimal set of Safeguards within IG1 that I need to implement to stop that attack?"
- More collaboration and correlation. As CIS Security Best Practices continues to mature our mappings to ATT&CK, we hope to incorporate CIS Benchmark mappings in next year's CDM.
- More external stakeholder engagement. As we all know, CIS is appreciative of our many volunteers within the CIS Community. None of this is possible without all of you. Next year, we will look to collaborate with even more enterprises to enhance and evolve future versions of the CDM.

We believe that future versions of the CDM can also provide a foundation for more detailed and specific analyses. For example, combined with other information (e.g., cost estimates for CIS Safeguards or through using different data sets), we could answer questions, such as:

- What is the most cost-effective way to obtain the security value of IG1?
- How can I make best security use of what I already own before I add technology, expense, and processes?
- If I use attack data that is unique to my industry sector, or threat intelligence that is unique to my company, which Safeguards should I implement to achieve an appropriate defensive strategy?
- Will my defenses be effective at multiple steps or tactics of the attack lifecycle?
- If I know the effectiveness of a specific CIS Safeguard (or its absence), can I
 intelligently 'tailor' my defenses to accommodate specific operational constraints
 (like the need to run legacy applications)?

We encourage readers to join our communities on CIS WorkBench to get updates, as well as contribute to future versions of the CDM. Email controlsinfo@cisecurity.org to get information on how to become a community member and more.

CIS Community Defense Model v2.0 Future Work Page 32

APPENDIX A

Acronyms and Abbreviations

ATT&CK (sub-)techniques	ATT&CK techniques + ATT&CK sub-techniques
CDM	Community Defense Model
CISA®	Cybersecurity and Infrastructure Security Agency
CWE	Common Weakness Enumeration
DMARC	Domain-based Message Authentication, Reporting & Conformance
DNS	Domain Name System
DoS	Denial of Service
EDR	Endpoint Detection and Response
ENISA	European Network and Information Security Agency
ESET	Executive Security & Engineering Technologies, Inc.
IBM	International Business Machines Corporation
ICS	Industrial Control Systems
IG	Implementation Group
IG1	Implementation Group 1
JSON	JavaScript Object Notation
LotL	Living off the Land
MBR	Master Boot Record
MFA	Multi-Factor Authentication
MIB	Management Information Base
MS-ISAC	Multi-State Information Sharing and Analysis Center
NIST® CSF	National Institute of Standards and Technology Cybersecurity Framework
OS	Operating System
ОТ	Occupational Technology
OWASP [®]	Open Web Application Security Project®
RDP	Remote Desktop Protocol
SLTT	State, Local, Tribal, and Territorial
SNMP	Simple Network Management Protocol
SQL	Structured Query Language
SSL	Secure Sockets Layer
TFTP	Trivial File Transfer Protocol
TLS	Transport Layer Security
TTP	Tactics, Techniques, and Procedures
URL	Uniform Resource Locator
VERIS Community Database	Vocabulary for Event Recording and Incident Sharing Community Database
Verizon DBIR	Verizon Data Breach Investigations Report
VNC	Virtual Network Computing
XSS	Cross-Site Scripting

CIS Community Defense Model v2.0 Appendix A: Acronyms and Abbreviations Page **A1**

APPENDIX B

Links and Resources

- CIS Controls: https://www.cisecurity.org/controls/
- MITRE ATT&CK: https://attack.mitre.org/
- CIS Critical Security Controls v8: https://www.cisecurity.org/controls/v8/
- CDM v1.0: https://www.cisecurity.org/white-papers/ cis-community-defense-model/
- CIS WorkBench: https://workbench.cisecurity.org/
- CIS Controls Navigator: https://www.cisecurity.org/ controls/cis-controls-navigator/
- CIS Controls Guide: Exploited Protocols: Remote Desktop Protocol: https://www.cisecurity.org/ white-papers/exploited-protocols-remote-desktopprotocol-rdp/
- 2020 Verizon¹ Data Breach Investigations Report (DBIR): https://enterprise.verizon.com/resources/ reports/dbir/2020/introduction/
- IBM X-Force² Threat Intelligence Index 2021: https://www.ibm.com/security/data-breach/threat-intelligence
- ENISA Threat Landscape The Year in Review (Published October 20, 2020): https://www.enisa. europa.eu/publications/year-in-review
- CrowdStrike Services Cyber Front Lines Report 2020: https://www.crowdstrike.com/services/cyber-front-lines/
- Akamai The State of the Internet: A Year in Review 2020: https://www.akamai.com/our-thinking/thestate-of-the-internet
- Bitdefender³ Mid-Year Threat Landscape Report 2020: https://www.bitdefender.com/files/News/ CaseStudies/study/366/Bitdefender-Mid-Year-Threat-Landscape-Report-2020.pdf

- Multi-State Information Sharing and Analysis Center (MS-ISAC) Top 10 Malware: https://www.cisecurity. org/ms-isac/
- CrowdStrike 2021 Global Threat Report: https:// www.crowdstrike.com/resources/reports/globalthreat-report/
- ESET Threat Report Q4 2020: https://www. welivesecurity.com/wp-content/uploads/2021/02/ ESET_Threat_Report_Q42020.pdf
- Check Point 2021 Cyber Security Report: https:// www.checkpoint.com/pages/cyber-securityreport-2021/
- Group-IB Ransomware Uncovered 2020–2021: https://www.group-ib.com/resources/threat-research/ransomware-2021.html
- OWASP Top 10⁴: https://owasp.org/wwwproject-top-ten/
- 2020 CWE Top 25: https://cwe.mitre.org/top25/ archive/2020/2020_cwe_top25.html
- Verizon Insider Threat Report 2019: https:// enterprise.verizon.com/resources/reports/insiderthreat-report/
- Securonix 2020 Insider Threat Report: https:// www.securonix.com/resources/2020-insiderthreat-report/
- G-Research Introducing the Insider Attack Matrix: https://www.gresearch.co.uk/article/introducing-the-insider-attack-matrix/
- CISA SolarWinds and Active Directory/M365
 Compromise Threat Report: https://us-cert.cisa.
 gov/sites/default/files/publications/Supply_Chain_
 Compromise_Detecting_APT_Activity_from_
 known_TTPs.pdf

CIS Community Defense Model v2.0 Appendix B: Links and Resources Page **B1**

¹ Verizon is a registered trademark of Verizon Trademark Services, LLC.

² IBM and X-Force are registered trademarks of International Business Machines Corporation.

 $^{3\}quad \text{Bitdefender is a registered trademark of Bitdefender IPR Management Ltd.}$

 $^{{\}tt 4} \quad {\tt OWASP} \ is \ a \ registered \ trademark \ of \ {\tt OWASP} \ Foundation, Inc.$

APPENDIX C

Background

The CIS Critical Security Controls (CIS Controls) are a prioritized set of CIS Safeguards to mitigate the most common cyber-attacks against systems and networks. The volunteer experts who develop the CIS Controls come from a wide range of sectors including defense, education, government, healthcare, manufacturing, retail, transportation, and others.

The earliest versions of the CIS Controls were based on the consensus judgment of a relatively small number of experienced people and validated with public feedback from across the industry. The analysis was supported by a simple list of important attacks against which to examine possible CIS Controls. Over more recent versions, CIS has started to develop more data and rigor to underpin the process.

CIS started by working with the emerging marketplace of authoritative summaries of "real world" data about attacks—beginning with the Verizon Data Breach Investigations Report (DBIR) in 2013. After the Verizon® team completed their initial attack analysis, a CIS volunteer team worked with Verizon to map the most important categories or types of attacks seen in the prior year's data to the CIS Controls, and this map became part of the Verizon DBIR Recommendations. Over the next couple of years, we repeated this process with several other security vendors.

While this approach is useful and based on summaries of data derived by each vendor from their own business model, there were several areas that had to be resolved:

- The vendor reports typically came from marketing departments, so the use of language was inconsistent across vendors and tended to be buzzword heavy
- There was no rigorous way to normalize the data and conclusions across different vendors
- The mapping from summaries and patterns of attack to the CIS Controls was still informal and based on the judgment of relatively few people

In our next step (in 2016), we developed the CIS Community Attack Model as a way to structure the discussion and the mapping from classes of attacks to the CIS Controls. Our goal was to create an open, high-level model in which classes of countermeasures (CIS Safeguards) were organized in two dimensions:

- Steps of the attacker's lifecycle (similar to the well-known Lockheed Martin Cyber Kill Chain)
- 2 Categories of defensive effect, for which we used the Core Functions of the National Institute of Standards and Technology Cybersecurity Framework (NIST CSF)

This approach helped CIS focus on questions like, "What types of countermeasures could help prevent the delivery phase of an attacker's lifecycle?"

You could also take a strategic view of defense by asking: "Am I over-invested in tools for detecting and preventing the early stages of attack, and under-invested if the initial steps of an attack succeed?"

While it was never fully operationalized, the Community Attack Model was a useful way to structure and capture the discussion about the value of Control selection. Ultimately, the Community Attack Model laid the groundwork for what we now know to be the Community Defense Model.

CIS Community Defense Model v2.0 Appendix C: Background Page C1

APPENDIX D

ATT&CK (Sub-)Techniques With No Mapping to CIS Safeguards

The following ATT&CK (sub-)techniques were assigned to an ATT&CK mitigation; however, they had no mapping back to a CIS Safeguard.

ATT&CK (sub-) technique ID	ATT&CK (sub-)technique Name
T1090.004	Domain Fronting
T1480	Execution Guardrails
T1480.001	Environmental Keying
T1583	Acquire Infrastructure
T1583.001	Domains
T1583.002	DNS Server
T1583.003	Virtual Private Server
T1583.004	Server
T1583.005	Botnet
T1583.006	Web Services
T1584	Compromise Infrastructure
T1584.001	Domains
T1584.002	DNS Server
T1584.003	Virtual Private Server
T1584.004	Server
T1584.005	Botnet
T1584.006	Web Services
T1585	Establish Accounts
T1585.001	Social Media Accounts
T1585.002	Email Accounts
T1586	Compromise Accounts

ATT&CK (sub-) technique ID	ATT&CK (sub-)technique Name
T1586.001	Social Media Accounts
T1586.002	Email Accounts
T1587	Develop Capabilities
T1587.001	Malware
T1587.002	Code Signing Certificates
T1587.003	Digital Certificates
T1587.004	Exploits
T1588	Obtain Capabilities
T1588.001	Malware
T1588.002	Tool
T1588.003	Code Signing Certificates
T1588.004	Digital Certificates
T1588.005	Exploits
T1588.006	Vulnerabilities
T1589	Gather Victim Identity Information
T1589.001	Credentials
T1589.002	Email Addresses
T1589.003	Employee Names
T1590.003	Network Trust Dependencies
T1591	Gather Victim Org Information
T1591.001	Determine Physical Locations

ATT&CK (sub-) technique ID	ATT&CK (sub-)technique Name
T1591.002	Business Relationships
T1591.003	Identify Business Tempo
T1591.004	Identify Roles
T1592	Gather Victim Host Information
T1592.001	Hardware
T1592.002	Software
T1592.003	Firmware
T1592.004	Client Configurations
T1593	Search Open Websites/Domains
T1593.001	Social Media
T1593.002	Search Engines
T1594	Search Victim-Owned Websites
T1596	Search Open Technical Databases
T1596.001	DNS/Passive DNS
T1596.002	WHOIS
T1596.003	Digital Certificates
T1596.004	CDNs
T1596.005	Scan Databases
T1597	Search Closed Sources
T1597.001	Threat Intel Vendors
T1597.002	Purchase Technical Data

APPENDIX E

ATT&CK (Sub-)Techniques With No Mapping to ATT&CK Mitigations

The following are the 84 MITRE ATT&CK (sub-)techniques that had no assignment to an ATT&CK mitigation. As per MITRE, these ATT&CK (sub-)techniques "cannot be easily mitigated with preventative controls since it is based on the abuse of system features," and therefore had no mapping to a CIS Safeguard (MITRE, 2021)¹.

ATT&CK (sub-) Technique ID	ATT&CK (sub-)technique Name	
T1005	Data from Local System	
T1006	Direct Volume Access	
T1007	System Service Discovery	
T1010	Application Window Discovery	
T1012	Query Registry	
T1014	Rootkit	
T1016	System Network Config. Discovery	
T1018	Remote System Discovery	
T1020	Automated Exfiltration	
T1025	Data from Removable Media	
T1027.001	Binary Padding	
T1027.003	Steganography	
T1027.004	Compile After Delivery	
T1027.005	Indicator Removal from Tools	
T1033	System Owner/User Discovery	
T1036.002	Right-to-Left Override	
T1036.004	Masquerade Task or Service	
T1036.006	Space after Filename	
T1039	Data from Network Shared Drive	
T1049	System Network Conn. Discovery	
T1056	Input Capture	
T1586.001	Social Media Accounts	
T1586.002	Email Accounts	
T1056.001	Keylogging	
T1056.004	Credential API Hooking	
T1057	Process Discovery	
T1069	Permission Groups Discovery	
T1069.001	Local Groups	
T1069.002	Domain Groups	

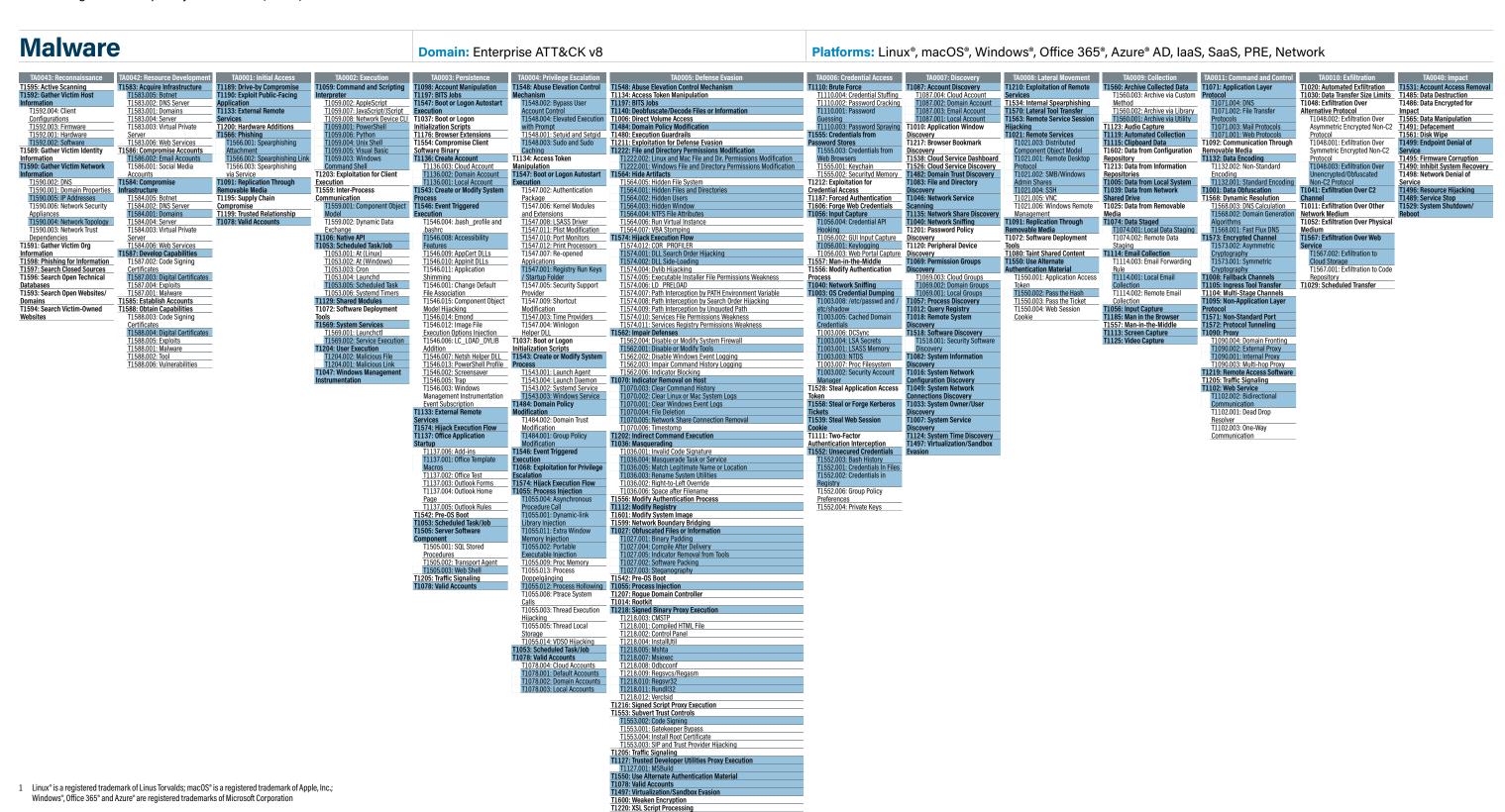
ATT&CK (sub-) Technique ID	ATT&CK (sub-)technique Name
T1069.003	Cloud Groups
T1070.004	File Deletion
T1070.005	Network Share Conn. Removal
T1070.006	Timestomp
T1074	Data Staged
T1074.001	Local Data Staging
T1074.002	Remote Data Staging
T1082	System Information Discovery
T1083	File and Directory Discovery
T1087.003	Email Account
T1113	Screen Capture
T1115	Clipboard Data
T1120	Peripheral Device Discovery
T1123	Audio Capture
T1124	System Time Discovery
T1125	Video Capture
T1134.004	Parent PID Spoofing
T1137.006	Add-ins
T1140	Deobfuscate/Decode Files or Info.
T1202	Indirect Command Execution
T1207	Rogue Domain Controller
T1217	Browser Bookmark Discovery
T1496	Resource Hijacking
T1497	Virtualization/Sandbox Evasion
T1497.001	System Checks
T1497.002	User Activity Based Checks
T1497.003	Time Based Evasion
T1505.003	Web Shell
T1518	Software Discovery

ATT&CK (sub-) Technique ID	ATT&CK (sub-)technique Name
T1518.001	Security Software Discovery
T1526	Cloud Service Discovery
T1529	System Shutdown/Reboot
T1531	Account Access Removal
T1534	Internal Spearphishing
T1542.002	Component Firmware
T1546	Event Triggered Execution
T1546.001	Change Default File Association
T1546.005	Trap
T1546.007	Netsh Helper DLL
T1546.012	Image File Exec. Options Injection
T1546.015	Component Obj. Model Hijacking
T1547	Boot or Logon Autostart Execution
T1547.001	Registry Run Keys / Startup Folder
T1547.010	Port Monitors
T1553.002	Code Signing
T1555.002	Securityd Memory
T1560.002	Archive via Library
T1560.003	Archive via Custom Method
T1564	Hide Artifacts
T1564.001	Hidden Files and Directories
T1564.005	Hidden File System
T1568.001	Fast Flux DNS
T1568.003	DNS Calculation
T1578.004	Revert Cloud Instance
T1600	Weaken Encryption
T1600.001	Reduce Key Space
T1600.002	Disable Crypto Hardware

APPENDIX F

Unmapped CIS Safeguards to ATT&CK Framework

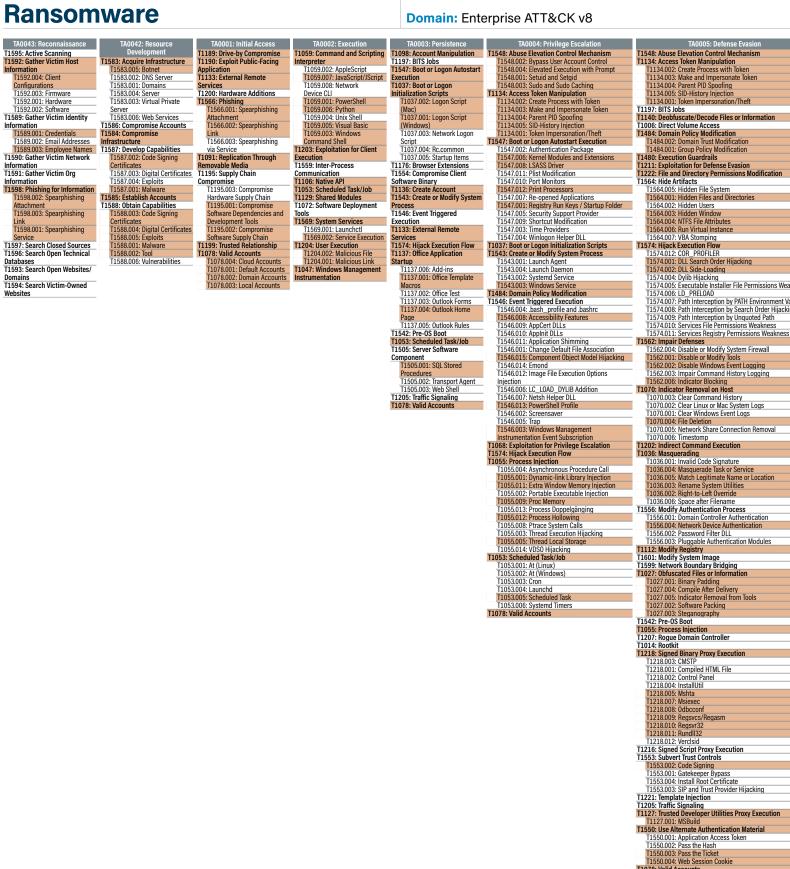
The following CIS Safeguards had no mapping to an ATT&CK mitigation or (sub-)technique.


Control	Safeguard	Title	IG1	IG2	IG3
1	1.3	Utilize an Active Discovery Tool		✓	✓
1	1.5	Use a Passive Asset Discovery Tool			✓
3	3.5	Securely Dispose of Data	✓	✓	✓
3	3.7	Establish and Maintain a Data Classification Scheme		√	✓
3	3.8	Document Data Flows		✓	✓
3	3.9	Encrypt Data on Removable Media		✓	✓
3	3.13	Deploy a Data Loss Prevention Solution			✓
3	3.14	Log Sensitive Data Access			✓
4	4.3	Configure Automatic Session Locking on Enterprise Assets	√	√	✓
4	4.11	Enforce Remote Wipe Capability on Portable End-User Devices		√	√
4	4.12	Separate Enterprise Workspaces on Mobile End-User Devices			✓
5	5.6	Centralize Account Management		√	√
6	6.6	Establish and Maintain an Inventory of Authentication and Authorization Systems		√	✓
6	6.7	Centralize Access Control		√	√
8	8.4	Standardize Time Synchronization		√	✓
8	8.6	Collect DNS Query Audit Logs		√	√
8	8.7	Collect URL Request Audit Logs		√	✓
8	8.8	Collect Command-Line Audit Logs		√	√
8	8.12	Collect Service Provider Logs			✓
9	9.5	Implement DMARC		√	√
10	10.4	Configure Automatic Anti-Malware Scanning of Removable Media		√	✓
10	10.6	Centrally Manage Anti-Malware Software		√	√
12	12.3	Securely Manage Network Infrastructure		√	✓
12	12.4	Establish and Maintain Architecture Diagram(s)		√	✓
13	13.1	Centralize Security Event Alerting		√	✓
13	13.6	Collect Network Traffic Flow Logs		√	✓
13	13.11	Tune Security Event Alerting Thresholds			✓
14	14.7	Train Workforce on How to Identify and Report if Their Enterprise Assets are Missing Security Updates	√	√	√

Control	Safeguard	Title	IG1	IG2	IG3
14	14.8	Train Workforce on the Dangers of Connecting to and Transmitting Enterprise Data Over Insecure Networks		✓	√
15	15.1	Establish and Maintain an Inventory of Service Providers	√	√	✓
15	15.2	Establish and Maintain a Service Provider Management Policy		✓	✓
15	15.3	Classify Service Providers		√	√
15	15.4	Ensure Service Provider Contracts Include Security Requirements		√	✓
15	15.5	Assess Service Providers			✓
15	15.6	Monitor Service Providers			✓
16	16.6	Establish and Maintain a Severity Rating System and Process for Application Vulnerabilities		✓	✓
16	16.7	Use Standard Hardening Configuration Templates for Application Infrastructure		√	✓
16	16.10	Apply Secure Design Principles in Application Architectures		√	✓
16	16.14	Conduct Threat Modeling			✓
17	17.1	Designate Personnel to Manage Incident Handling	✓	√	√
17	17.2	Establish and Maintain Contact Information for Reporting Security Incidents	√	√	✓
17	17.3	Establish and Maintain an Enterprise Process for Reporting Incidents	√	✓	✓
17	17.4	Establish and Maintain an Incident Response Process		√	✓
17	17.5	Assign Key Roles and Responsibilities		√	√
17	17.6	Define Mechanisms for Communicating During Incident Response		✓	✓
17	17.7	Conduct Routine Incident Response Exercises		√	✓
17	17.8	Conduct Post-Incident Reviews		✓	✓
17	17.9	Establish and Maintain Security Incident Thresholds			√
18	18.4	Validate Security Measures			√

APPENDIX G

ATT&CK Navigator¹ Visualizations for Attack Patterns


A full listing of JavaScript Object Notation (JSON) files can be found on CIS WorkBench here.

CIS Community Defense Model v2.0

Ransomware

x[®], macOS[®], Windows[®], Office 365[®], Azure[®] AD, IaaS, SaaS, PRE, Network

	Platforms: Linux®,
	TA0006: Credential Access T1110: Brute Force
	T1110.004: Credential Stuffing T1110.002: Password
	Cracking T1110.001: Password
n	Guessing T1110.003: Password Spraying
	T1555: Credentials from Password Stores T1555.003: Credentials from
	Web Browsers T1555.001: Keychain T1555.002: Securityd Memory
tion	T1212: Exploitation for Credential Access
	T1187: Forced Authentication T1606: Forge Web Credentials T1056: Input Capture
	T1056.004: Credential API Hooking T1056.002: GUI Input Capture
	T1056.001: Keylogging T1056.003: Web Portal
	T1557: Man-in-the-Middle T1557.002: ARP Cache
ns Weakness	Poisoning T1557.001: LLMNR/NBT-NS Poisoning and SMB Relay
nent Variabl Hijacking	T1556: Modify Authentication Process
h ss ikness	T1040: Network Sniffing T1003: OS Credential Dumping T1003.008: /etc/passwd and
	/etc/shadow T1003.005: Cached Domain
	Credentials T1003.006: DCSync T1003.004: LSA Secrets
	T1003.001: LSASS Memory T1003.003: NTDS T1003.007: Proc Filesystem
	T1003.002: Security Account Manager
al	T1528: Steal Application Access Token T1558: Steal or Forge Kerberos
	Tickets T1539: Steal Web Session Cookie
า	T1111: Two-Factor Authentication Interception
	T1552: Unsecured Credentials T1552.003: Bash History T1552.001: Credentials
	In Files T1552.002: Credentials in Registry
	T1552.006: Group Policy Preferences
	T1552.004: Private Keys
	_
	_
	_
ion	
	_

T1087: Account Discovery
T1010: Application Window 1563: Remote Service Session Discovery T1538: Cloud Service Dashboard T1526: Cloud Service Discovery T1482: Domain Trust Discovery T1083: File and Directory T1021: Remote Services T1021.003: Distributed Discovery
T1046: Network Service Protocol T1021.002: SMB/Windows Scanning T1135: Network Share Discovery T1040: Network Sniffing T1201: Password Policy 021.004: SSH Discovery T1120: Peripheral Device Management
T1091: Replication Through Discovery T1069: Permission Groups Removable Media
T1072: Software Deployment Discovery
T1069.003: Cloud Groups
T1069.002: Domain Groups Tools
T1080: Taint Shared Content
T1550: Use Alternate
Authentication Material 1069.001: Local Groups T1057: Process Discovery T1012: Query Registry T1018: Remote System Discovery T1518: Software Discovery T1518.001: Security Softw Discovery T1082: System Information Discovery T1016: System Network Configuration Discovery T1049: System Network Connections Discovery T1033: System Owner/Use Discovery T1007: System Service Discovery T1124: System Time Discovery T1497: Virtualization/Sandbox

T1210: Exploitation of Remote T1560: Archive Collected Data T1071: Application Laver T1071.004: DNS T1071.002: File Transfer T1123: Audio Capture
T1119: Automated Collection T1092: Communication Through Removable Media T1132: Data Encoding Component Object Model Repository
T1021,001; Remote Desktop T1213; Data from Information T1132.002: Non-Standard Encoding T1132.001: Standard Encoding T1001: Data Obfuscation T1213.002: Sharepoint T1005: Data from Local System T1039: Data from Network T1001.001: Junk Data T1001.003: Protocol Impersonation
T1001.002: Steganography
T1568: Dynamic Resolution
T1573: Encrypted Channel
T1573.002: Asymmetric T1025: Data from Re T1074: Data Staged
T1114: Email Collection
T1114.003: Email Forwarding ryptography 1573,001: Symmetric Rule T1114.001: Local Email Cryptography
T1008: Fallback Channels
T1105: Ingress Tool Transfer
T1104: Multi-Stage Channels
T1095: Non-Application Layer Collection T1114,002: Remote Email T1090: Non-Application Layer Protocol T1571: Non-Standard Port T1572: Protocol Tunneling T1090: Proxy T1090.004: Domain Fronting T1185: Man in the Browser T1557: Man-in-the-Middle T1090.002: External Proxy T1090.001: Internal Proxy T1090.003: Multi-hop Proxy

T1219: Remote Access

T1020: Automated Exfiltration T1030: Data Transfer Size T1531: Account Access T1048: Exfiltration Over Alternative Protocol
T1041: Exfiltration Over C2 Channel T1011: Exfiltration Over Other T1561: Disk Wipe T1499: Endpoint Denial of Network Medium T1052: Exfiltration Ove Service T1495: Firmware Corruption Physical Medium T1567: Exfiltration Over Web T1490: Inhibit System Recover Service T1496: Resource Hijacking T1489: Service Stop T1529: System Shutdown/ Cloud Storage T1567.001: Exfiltration to

T1078: Valid Accounts
T1497: Virtualization/Sandbox Evasion
T1497.001: System Checks
T1497.002: User Activity Based Checks

Web Application Hacking

T1595: Active Scanning T1595.001: Scanning IP Blocks T1595.002: Vulnerability

T1592: Gather Victim F

Information T1590: Gather Victim Network

Information
T1598: Phishing for Information
T1597: Search Closed Sources
T1596: Search Open Technical

Databases
T1596.004: CDNs
T1596.003: Digital Certificates
T1596.001: DNS/Passive DNS
T1596.005: Scan Databases

T1596.002: WHOIS T1593: Search Open Websites/ Domains T1594: Search Victim-Owned

T1583: Acquire Infrastructure T1189: Drive-by Compromise T1190: Exploit Public-Facing 1583.001: Domains

Application T1133: External Remote 583.004: Serve Server T1583.006: Web Services

1584.005: Botnet

1584.002: DNS Server 1584.001: Domains [1584.003: Virtual Private

1059.008: Network Device Cl 1059.001: PowerShell 1059.006: Python 1059.004: Unix Shell T1059.005: Visual Basic T1059.003: Windows T1203: Exploitation for Client

T1059: Command and Scripting

T1559.001: Component Obje

Domain: Enterprise ATT&CK v8

T1197: BITS Jobs T1547: Boot or Logon Autosta

preter .059.002: AppleScript 1059.007: JavaScript/JScript

T1129: Shared Modules T1072: Software Deployn

execution
T1037: Boot or Logon
Sitialization Scripts T1037.002: Logon Script (Mac) T1037.001: Logon Script

T1554: Compromise Client Software Binary T1136: Create Account T1546: Event Triggered

Execution T1133: External Remote Services T1574: Hijack Execution Flow T1525: Implant Container Image T1137: Office Application Startup
T1542: Pre-OS Boot
T1053: Scheduled Task/Job
T1505: Server Software

ponent [1505.001: SQL Stored Procedures T1505.002: Transport Agent T1505.003: Web Shell

1548: Abuse Elevation Control Mechanism 1548.001: Setuid and Setaid

11548.001: Setulo and Setglo T1548.003: Sudo and Sudo Caching T1134: Access Token Manipulation T1134.002: Create Process with Token T1134.003: Make and Impersonate Token T1134.004: Parent PID Spoofing

T1134.005: SID-History Injection
T1134.001: Token Impersonation/Theft
T1547: Boot or Logon Autostart Execution

1547.010: Port Monitors 1547.012: Print Processors 1547.007: Re-opened Applications 1547.001: Registry Run Keys / Startup Folder 1547.001: Registry Run Keys / Startup Folder 1547.009: Shortcut Modification 1547.003: Time Providers

T1547.004: Winlogon Helper DLL T1037: Boot or Logon Initialization Scripts T1543: Create or Modify System Process 1543.001: Launch Agent 1543.004: Launch Daemon 1543.002: Systemd Service 1543.003: Windows Service

T1484: Domain Policy Modification
T1546: Event Triggered Execution
T1546.004: .bash_profile and .bashr

11546.001: Change Default File Association T1546.001: Component Object Model Hijacki T1546.014: Emond T1546.012: Image File Execution Options

Injection
T1546.006: LC_LOAD_DYLIB Addition
T1546.007: Netsh Helper DLL
T1546.013: PowerShell Profile

T1546,003: Windows Management Instrumentation Event Subscription
T1068: Exploitation for Privilege Esc
T1574: Hijack Execution Flow
T1055: Process Injection

1055.002: Portable Executable Injection 11055.009: Proc Memory 11055.0019: Process Doppelgänging 11055.012: Process Hollowing 11055.003: Thread System Calls 11055.003: Thread Execution Hijacking 11055.003: Thread Local Storage 11055.005: Thread Local Storage

T1053: Scheduled Task/Job T1053.001: At (Linux) T1053.002: At (Windows)

Platforms: Linux®, macOS®, Windows®, Office 365®, Azure® AD, IaaS, SaaS, PRE, Network

T1110: Brute Force
T1110.004: Credential Stuffing
T1110.002: Password Cracking
T1110.001: Password T1110: Brute Force
T1110.004: Credential Stuffing
T1110.002: Password Cracking
T1110.001: Password Guessing T1110.003: Password Spraying Password Stores T1555.003: Credentials from

Password Stores T1555.003: Credentials from T1555.001: Keychain
T1555.002: Securityd Memory
T1212: Exploitation for
Credential Access
T1187: Forced Authentication
T1606: Force Web Credentials

T1574.002: DLL Side-Loading T1574.004: Dvlib Hijacking Weakness T1574.006: LD_PRELOAD T1056: Input Capture T1056.004: Credential API 1574.007: Path Interception by PATH

nvironment Variable 1574.008: Path Interception by Search Order ijacking 1574.009: Path Interception by Unquoted Path 1574.010: Services File Permissions Weakness 1574.011: Services Registry Permissions

1548: Abuse Elevation Control Mechanism

11140: Deomiscate/Decode Files or inf T1006: Direct Volume Access 11484: Domain Policy Modification 11480: Execution Guardrails 11211: Exploitation for Defense Evasion 11222: File and Directory Permissions

T1140: Deobfuscate/Decode Files or Information

T1134: Access Token Man T1197: BITS Jobs

Modification 1564: Hide Artifacts

1574: Hijack Execution Flo

T1557: Man-in-the-Middle
T1556: Modify Authentication T1562: Impair Defenses
T1070: Indicator Removal on Host
T1202: Indirect Command Execution

T1040: Network Sniffing
T1003: OS Credential Dumping
T1528: Steal Application Access T1558: Steal or Forge Kerberos 1036.004: Masquerade Task or Service T1558.004: AS-REP Roasting T1036.005: Match Legitimate Name or Location T1036.003: Rename System Utilities T1036.002: Right-to-Left Override T1036.006: Space after Filename

T1558.002: Silver Ticket T1539: Steal Web Session III JOSUUS: Space after Filename
T1556: Modify Authentication Process
T1578: Modify Cloud Compute Infrastructure
T1112: Modify Registry
T1601: Modify System Image
T1599: Network Boundary Bridging
T1027: Obtucated Files or Information
T1542: Pre-05 Boot

T1055: Process Injection
T1207: Rogue Domain Controller
T1014: Rootkit

1218.007: Msiexec 218.008: Odbccon T1218.010: Regsvr32 T1218.011: Rundll32

T1014: Rootkit
T1218: Signed Binary Proxy Execution
T1218.003: CMSTP
T1218.001: Compiled HTML File
T1218.002: Control Panel

11218.011: Hundis2
T1218.012: Verdsid
T1218.15: Signed Script Proxy Execution
T1553: Subvet Trust Controls
T1553.002: Code Signing
T1553.001: Gatekeeper Bypass
T1553.003: SIP and Trust Provider Hijacking
T1553.003: SIP and Trust Provider Hijacking

T1535: Unused/Unsupported Cloud Regions T1550: Use Alternate Authentication Material T1550.001: Application Access Token 1550.001: Application Act 1550.002: Pass the Hash 1550.003: Pass the Ticket

T1600: Weaken Encryption T1220: XSL Script Processi

T1552: Unsecured Credentials
T1552.003: Bash History
T1552.005: Cloud Instance Metadata API 71542.004: ROMMONkit F1542.001: System Firmware F1542.005: TFTP Boot

1552.001: Credentials In Files Registry T1552,006: Group Policy

T1056: Input Capture T1056.004: Credential API 1056.002: GUI Input Capture 1056.002: GUI Input Capture T1557: Man-in-the-Middle T1556: Modify Authentication T1040: Network Sniffing
T1003: OS Credential Dumping
T1528: Steal Application Access T1558: Steal or Forge Kerberos T1558.004: AS-REP Roasting T1558.002: Silver Ticket T1539: Steal Web Session T1111: Two-Factor Metadata API T1552.001: Credentials In Files T1552.002: Credentials in Registry T1552,006: Group Policy

Preferences T1552.004: Private Keys

eb Browsers 555.001: Keychain

T1210: Exploitation of Remote T1560: Archive Collected Data T1123: Audio Capture
T1119: Automated Collection

T1563: Remote Service Session Γ1021.003: Dis Repository T1213: Data from Information

T1555.002: Securityd Memory
T1212: Exploitation for
Credential Access
T1187: Forced Authentication
T1606: Forge Web Credentials T1021.002: SMB/Win Indian Shares 1021.004: SSH 1021.005: VNC 1021.006: Windows R

T1072: Software Dep T1557: Man-in-the-Middle T1113: Screen Capture T1125: Video Capture T1080: Taint Shared Conten T1550: Use Alternate

T1071: Application Layer

T1071.002: File Transfer T1092: Communication Through Removable Media T1132: Data Encoding
T1001: Data Obfuscation lepositories 1005: Data from Local System

11001: Bata Obuscation T1568: Dynamic Resolution T1573: Encrypted Channel T1008: Fallback Channels T1105: Ingress Tool Transfer T1104: Multi-Stage Channels T1095: Non-Application Layer Protocol T1039: Data from Network T1074: Data Staged
T1114: Email Collection 1185: Man in the Brows

Protocol T1571: Non-Standard Port T1572: Protocol Tunneling T1090: Proxy T1219: Remote Access Software
T1205: Traffic Signaling
T1102: Web Service

T1020: Automated Exfiltration T1030: Data Transfer Size Limits T1048: Exfiltration Over

Alternative Protocol T1041: Exfiltration Over C2 Channel T1011: Exfiltration Over Other Network Medium T1052: Exfiltration Over Physical

Medium T1567: Exfiltration Over Web Account

T1499.004: Application or System Exploitation T1499.001: OS Exhaustion Flood T1499.002: Service Exhaustic

T1495: Firmware Corruption T1490: Inhibit System Recovery T1498: Network Denial of Service T1498.001: Direct Network Flood T1498.002: Reflection

T1531: Account Access Remova

T1485: Data Destruction T1486: Data Encrypted for

Impact T1565: Data Manipulation

T1491: Defacement T1561: Disk Wipe T1499: Endpoint Denial of

Amplification T1496: Resource Hijacking

Insider Privilege and Misuse

Domain: Enterprise ATT&CK v8

Platforms: Linux®, macOS®, Windows®, Office 365®, Azure® AD, AWS®, GCP®, Azure®, SaaS, PRE, Network

TA0043: Reconnaissan T1595: Active Scanning T1592: Gather Victim Host nformation T1592.004: Client

T1589: Gather Victim Identity

formation T1589.001: Credentials

T1589.002: Email Addresses T1589.003: Employee Names T1590: Gather Victim Network Information T1591: Gather Victim Org

Relationships T1591,001: Determine Physica

Locations T1591.003: Identify Business

Tempo T1591.004: Identify Roles T1598: Phishing for Information T1597: Search Closed Sources T1596: Search Open Technical

Databases T1593: Search Open Websites/ Domains T1594: Search Victim-Owned

T1583: Acquire Infrastructure

T1588.003: Code Signing

T1588.006: Vulnerabilities

Certificates F1588.004: Digital Certificates

Services
T1200: Hardware Additions
T1566: Phishing
T1091: Replication Through T1587.002: Code Signing 1587.003: Digital Certificates T1585: Establish Accounts mpromise T1195,003: Compromise T1588: Obtain Capabilities

Software Dependencies and Development Tools
T1195.002: Compromise
Software Supply Chain
L199: Trusted Relationship

1078: Valid Accounts
T1078.004: Cloud Accounts
T1078.001: Default Accounts

T1059: Command and Scripting T1189: Drive-by Compromise T1190: Exploit Public-Facing Application T1133: External Remote

T1203: Exploitation for Clien

Communication T1106: Native API T105: Native Ari T1053: Scheduled Task/Job T1129: Shared Modules T1072: Software Deploymen

T1569: System Services
T1204: User Execution
T1204.002: Malicious File

T1098: Account Manipulation

Execution T1037: Boot or Logor nitialization Scripts 1176: Browser Exter Software Binary 1136: Create Account 1543: Create or Modify System 1546: Event Triggere

Execution T1133: External Remote Services T1574: Hijack Execution Flow T1525: Implant Container Image T1137: Office Application Startup
T1542: Pre-OS Boot
T1053: Scheduled Task/Job
T1505: Server Software

Modification T1546: Event Triggered Escalation
T1574: Hijack Execution Flow
T1574.012: COR_PROFILER
T1574.001: DLL Search Order

T1548: Abuse Elevation Control Manipulation T1547: Boot or Logon Autostart T1037: Boot or Logon Initialization Scripts
T1543: Create or Modify Syste

Process
T1543.001: Launch Agent
T1543.004: Launch Daemon
T1543.002: Systemd Service
T1543.003: Windows Service
T1484: Domain Policy
Mudfication Execution T1068: Exploitation for Privilege

jacking jacking 1574.002: DLL Side-Loading [1574.004: Dylib Hijacking T1574.005: Executable Weakness T1574.006: LD_PRELOAD T1574.007: Path Interception

by Search Order Hijacking T1574.009: Path Interceptio

Permissions Weakness T1574.011: Services Registry

by Unquoted Path T1574.010: Services File

T1055: Process Injection T1053: Scheduled Task/Job

T1078: Valid Accounts

T1548: Abuse Elevation Control Mechanism 11348: Abuse Levation Control Mechanism
T1134: Access Token Manipulation
T1191: BITS Jobs
T1140: Deobfuscate/Decode Files or Information
T1006: Direct Volume Access
T1484: Domain Policy Modification
T1484.001: Group Policy Modification
T1484.001: Group Policy Modification
T1480: Evertion Grandrale T1480: Execution Guardrails
T1211: Exploitation for Defense Evasion
T1222: File and Directory Permissions Modification T1564: Hide Artifacts
T1564.005: Hidden File System
T1564.001: Hidden Files and Directories
T1564.002: Hidden Users

1564.004: NTFS File Attributes 1564.006: Run Virtual Instance T1564.007: VBA Stomping
T1574: Hijack Execution Flow
T1562: Impair Defenses
T1562.008: Disable Cloud Logs

T1562.003: Impair Command History Logging T1562.006: Indicator Blocking T1070: Indicator Removal on Host

11070.004: File Deletion
11070.005: Network Share Connection Removal
11070.005: Timestomp
11202: Indirect Command Execution
11036: Masquerading
11036: Masquerading
11036.001: Invalid Code Signature
11036.003: Mash Laguerade Task or Service
11036.005: Match Legitimate Name or Location
11036.003: Rename System Utilities
11036.002: Right-to-left Override
11036.006: Space after Filename
11556: Modify Authentication Process
11578: Modify Cloud Compute Infrastructure
11578.001: Create Cloud Instance
11578.003: Delete Cloud Instance
11578.003: Revert Cloud Instance
11578.004: Revert Cloud Instance

T1539: Steal Web Session Cookie T1111: Two-Factor Authentication Interception
T1552: Unsecured Credentials
T1552.003: Bash History
T1552.005: Cloud Instance

T1112: Modify Registry
T1601: Modify System Image
T1599: Network Boundary Bridging
T1027: Obfuscated Files or Informati

11393. Network souldary Protuguita
T1027: Obfuscated Files or Information
T1542: Pre-OS Boot
T1055: Process Injection
T1207: Rogue Domain Controller
T1014: Rootkit
T1218: Signed Binary Proxy Execution
T1218: Signed Script Proxy Execution
T1218: Signed Script Proxy Execution
T1553: Subvert Trust Controls
T1221: Template Injection
T1205: Traffic Signaling
T1127: Trusted Developer Utilities Proxy Execution
T1353: Unused/Unsupported Cloud Regions
T1550: Use Alternate Authentication Material
T1078: Valid Accounts
T1497: Virtualization/Sandbox Evasion
T1600: Weaken Encryption
T1207: XSL Script Processing

T1110: Brute Force
T1110.004: Credential Stuffing
T1110.002: Password Cracking
T1110.001: Password

Password Stores T1555,003: Credentials from Web Browsers
T1555.001: Keychain
T1555.002: Securityd Memory Discovery
T1538: Cloud Service Dashboard
T1526: Cloud Service Discovery
T1482: Domain Trust Discovery
T1083: File and Directory T1212: Exploitation for

Credential Access
T1187: Forced Authentication T1606: Forge Web Credentials
T1056: Input Capture
T1056.004: Credential API Discovery T1046: Network Service Scanning T1135: Network Share Discovery

Metadata API T1552.001: Credentials In Files T1552.002: Credentials in

Registry T1552.006: Group Policy Preferences T1552.004: Private Kevs

Hooking T Hooking T 11056.002: GUI Input Capture T 11056.003: Keylogging T 11056.003: Web Portal Capture T 11557: Man-in-the-Middle T 11556: Modify Authentication Discovery T1120: Peripheral Device

Discovery T1069.003: Cloud Groups T1003: 0S Credential Dumping
T1003:00S: /etc/passwd and /
etc/shadow
T1003:005: Cached Domain Discovery T1518: Software Discovery 1003.001: LSASS Memory

T1003.003: NTDS T1003.007: Proc Filesystem T1003.002: Security Account Discovery
T1082: System Information Manager T1528: Steal Application Access Discovery T1016: System Network Token T1558: Steal or Forge Kerberos

> Discovery T1007: System Service Discovery
> T1124: System Time Discovery
> T1497: Virtualization/Sandbox

T1087: Account Discovery
T1087: Account Discovery
T1087.004: Cloud Account
T1087.002: Domain Account
T1087.003: Email Account
T1087.001: Local Account T1210: Exploitation of Remote T1570: Lateral Tool Transfer T1563: Remote Service Session Discovery T1217: Browser Bookmark T1021.003: Distributed Component Object Model T1021.001: Remote Deski Discovery T1580: Cloud Infrastructure

Protocol T1021,002: SMB/Windows Admin Shares T1021.004: SSH T1021.006: Windows Remote

movable Media T1072: Software Deployment T1080: Taint Shared Content T1550: Use Alternate

T1071: Application Layer T1560: Archive Collected Data T1132: Data Encoding T1001: Data Obfuscation T1568: Dynamic Resolution T1573: Encrypted Channel T1123: Audio Capture
T1119: Automated Collection
T1115: Clipboard Data
T1530: Data from Cloud Storage Object T1602: Data from Configuration

T1095: Non-Application Layer Repository T1213: Data from Information T1571: Non-Standard Port T1572: Protocol Tunneling Shared Drive T1025: Data from Removable T1102: Web Service

Media T1074: Data Staged T1074:001: Local Data Staging T1074.002: Remote Data Staging T1114: Email Collection T1114.003: Fmail Forwarding Rule T1114.001: Local Email Collection T1114.002: Remote Email Collection T1056: Input Capture

T1185: Man in the Browser T1557: Man-in-the-Middle T1113: Screen Capture T1125: Video Capture

T1020: Automated Exfiltration T1030: Data Transfer Size Limits T1048: Exfiltration Over T1531: Account Access Remova Alternative Protocol
T1041: Exfiltration Over C2 Channel T1011: Exfiltration Over Other Manipulation T1565.001: Stored Data Network Medium T1011.001: Exfiltration Over Manipulation T1565.002: Transmitted Data Medium T1052.001: Exfiltration

T1561: Disk Wipe
T1561.001: Disk Content Wipe
T1561.002: Disk Structure over USB T1567: Exfiltration Over Web Service T1567.002: Exfiltration to T1499: Endpoint Denial o Service T1495: Firmware Corruption Repository
T1029: Scheduled Transfer
T1537: Transfer Data to Cloud Service T1496: Resource Hijacking

CIS Community Defense Model v2.0 Appendix G: ATT&CK Navigator Visualizations for Attack Patterns: Insider Privilege and Misuse Page G4

Targeted Intrusions

T1595: Active Scanning T1592: Gather Victim Host T1589: Gather Victim Identity

Information T1590: Gather Victim Network Information T1591: Gather Victim Org

T1591.002: Busi T1591.001: Determine Physical

Tempo T1591.004: Identify Roles

T1591:004: Identity Noies
T1598: Phishing for Information
T1597: Search Closed Sources
T1596: Search Open Technical Databases T1593: Search Open Websites/ Domains T1594: Search Victim-Owned

T1583: Acquire Infrastructure T1586: Compromise Accor T1584: Compromise

> 666: Phishing T1566.001: Spearphishing 1587.003: Digital Certificates 1587.004: Exploits T1585: Establish Accounts T1588: Obtain Capabilities

via Service
T1091: Replication Through T1588.003: Code Signing Certificates T1588.004: Digital Certificates Removable Media T1195: Supply Chain T1195.003: Compro

Hardware Supply Chain T1195.001: Compromise Software Dependencies and Development Tools T1195.002: Compromise

T1189: Drive-by Compromise T1190: Exploit Public-Facing Application 1133: External Remote

1059.007: JavaScript/JScript 1059.008: Network Device C 11059.001: PowerShell 11059.006: Python 11059.004: Unix Shell Services T1200: Hardware Additions T1566: Phishing T1203: Exploitation for Clien

> Communication
> T1106: Native API
> T1053: Scheduled Task/Job
> T1129: Shared Modules
> T1072: Software Deploymen Tools T1569: System Services

T1059: Command and Scripting

T1569.001: Launchctl T1569.002: Service Executi T1204: User Execution T1204.002: Malicious File 1204.001: Malicious Link T1078.001: Default Accounts T1047: Windows Management T1078.002: Domain Accounts T1078.003: Local Accounts

Domain: Enterprise ATT&CK v8

T1098.003: Add Office 365 Global Administrator Role T1098.001: Additional Cloud

1098.002: Exchange Email 1098.004: SSH Authorized Keys T1197: BITS Jobs T1547: Boot or Logon Autostart Execution T1037: Boot or Logon

nitialization Scripts 1176: Browser Exten T1136.003: Cloud Account T1136.002: Domain Account

T1543: Create or Modify System Process T1546: Event Triggered

1546.009: AppCert DLLs Shimming T1546.001: Change Default File Association T1546.015: Component Object

Model Hijacking T1546.014: Emond T1546.012: Image File Execution Options Injection
T1546.006: LC_LOAD_DYLIB Addition T1546.007: Netsh Helper DLL T1546.013: PowerShell Profile

T1133: External Remote Services T1574: Hijack Execution Flow T1137: Office Application

Startup T1542: Pre-OS Boo T1053: Scheduled Task/Job T1505: Server Software

Procedures T1505.002: Transport T1505.003: Web Shell T1205: Traffic Signaling T1078: Valid Accounts

T1053.003: Cron

T1053.004: Launchd T1053.005: Scheduled Task

Platforms: Linux®, macOS®, Windows®, Office 365®, Azure® AD, IaaS, SaaS, PRE, Network

T1548: Abuse Elevation Control T1548: Abuse Elevation Control Mechanism T1548.002: Bypass User Account Control T1548.004: Elevated Execution with Prompt T1548.001: Setuid and Setgid T1548.003: Sudo and Sudo Caching
T1134: Access Token Manipulation
T1197: BITS Jobs
T1140: Deobfuscate/Decode Files or Information T1134.002: Create Process mpersonate Token 1134.004: Parent PID T1134.005: SID-History T1480: Execution Guardrails
T1211: Exploitation for Defense Evasion
T1222: File and Directory Permissions Modification
T1222:002: Linux and Mac File and Directory Permi Injection T1134.001: Token Impersonation/Ineπ T1547: Boot or Logon Autostari 1222 001: Windows File and Directory Permissions Modification ecution T1547.002: Authentication T1564: Hide Artifacts
T1564.005: Hidden File System
T1564.001: Hidden Files and Direct ackage 1547.006: Kernel Modules 11547.000: Kernel Modules and Extensions T1547.008: LSASS Driver T1547.011: Plist Modification T1547.010: Port Monitors T1547.012: Print Processors T1547.007: Re-opened 11564.001: Hidden Files and Dir T1564.002: Hidden Users T1564.003: Hidden Window T1564.004: NTFS File Attributes T1564.006: Run Virtual Instance T1564.007: VBA Stomping Applications T1547.001: Registry Run Keys T1574.001: DLL Search Order Hijacking T1574.002: DLL Side-Loading Startup Folder F1547.005: Security Support 574.004: Dylib Hijacking
574.005: Executable Installer File Permissions Weakness T1547.009: Shortcut T1574.006: LD_PRELOAD

T1574.007: Path Interception by PATH Environment Variable

T1574.008: Path Interception by Search Order Hijacking Modification T1547.003: Time Providers T1547.004: Winlogon 1197-4005: Path Interception by Unquoted Path
11574.010: Services File Permissions Weakness
11574.011: Services Registry Permissions Weakness
11562: Impair Defenses
11562.004: Disable or Modify System Firewall
11562.002: Disable or Modify Tools
11562.003: Disable Windows Event Logging
11562.003: Impair Compand History Longing Initialization Scripts
T1543: Create or Modify System 1543.004: Launch Daemor 1562.003: Impair Command History Logging T1543.002: Systemd Service T1543.003: Windows Service T1484: Domain Policy 0.002: Clear Linux or Mac System Logs 0.001: Clear Windows Event Logs T1484.002: Domain Trust 11070.001: Clear Wildows Even Logs 11070.004: File Deletion 11070.005: Network Share Connection Removal 11070.006: Timestomp T1484.001: Group Policy T1070.005: Network Share Connection Removal T1070.006: Timestomp T1202: Indirect Command Execution T1036: Masquerading T1036.001: Invalid Code Signature T1036.001: Invalid Code Signature T1036.005: Masquerade Task or Service T1036.003: Rename System Utilities T1036.003: Rename System Utilities T1036.006: Space after Filename T1556: Modify Authentication Process T1112: Modify System Image T1599: Network Boundary Bridging T1027: Obfuscated Files or Information T1027.001: Binary Padding T1546: Event Triggered Execution T1068: Exploitation for Privilege 1055: Process Injection T1055.004: Asynchronous Library Injection T1055.011: Extra Window T1027.001: Binary Padding T1027.004: Compile After Delivery T1027.005: Indicator Removal from Tools T1027.002: Software Packing xecutable Injection Doppelgänging T1055.012: Process Hollowing T1055.008: Ptrace Systen T1055: Process Injection T1207: Rogue Domain Contr Hijacking T1055.005: Thread Local T1218: Signed Binary Proxy Execution 10. Signet Bildly Proxy Execut T1218.003: CMSTP T1218.001: Compiled HTML File T1218.002: Control Panel T1218.004: InstallUtil T1218.005: Mshta Storage T1055.014: VDSO Hijacking T1053: Scheduled Task/Job T1053.001: At (Linux) T1053.002: At (Windows)

T1218.007: Msiexec

1218.008: Odbcconf 1218.009: Regsvcs/Rega 1218.010: Regsvr32 1218.011: Rundll32 T1218.012: Verclsid
T1216: Signed Script Proxy Execution
T1553: Subvert Trust Controls

53: Subvert Hust Controls T1553.002: Code Signing T1553.001: Gatekeeper Bypass T1553.004: Install Root Certificate T1553.003: SIP and Trust Provider Hijacking

T1221: Template Injection
T1205: Traffic Signaling
T1127: Trusted Developer Utilities Proxy Execution

1550.003: Pass the Ticket 1550.004: Web Session Cookie T1078: Valid Accounts
T1497: Virtualization/Sandbox Evasion
T1497:001: System Checks
T1497:003: Time Based Evasion 497.002: User Activity Based Checks T1110: Brute Force
T1110.004: Credential Stuffing
T1110.002: Password Cracking T1212: Exploitation for Credential Access
T1187: Forced Authentication T1606: Forge Web Credentials T1606.002: SAML Tokens T1056: Input Capture T1056.004: Credential API T1003.001: LSASS Memory T1003.003: NTDS T1003.007: C Manager T1528: Steal Application Access T1558: Steal or Forge Kerberos 558.004: AS-REP Roasting

T1539: Steal Web Session

Authentication Interception T1552: Unsecured Credentials T1552.003: Bash History T1552.001: Credentials In Files

Preferences T1552.004: Private Kevs

Cookie T1111: Two-Factor

TA0007: Discovery
T1087: Account Discovery
T1087.004: Cloud Account
T1087.002: Domain Account
T1087.003: Email Account
T1087.001: Local Account Discovery T1217: Browser Bookmark Password Stores T1555,003: Credentials from Discovery
T1538: Cloud Service Dashboard
T1526: Cloud Service Discovery
T1482: Domain Trust Discovery
T1083: File and Directory T1555.001: Keychain T1555.002: Securityd Memory Discovery T1046: Network Service Scanning T1135: Network Share Disco T1040: Network Sniffing T1201: Password Policy Discovery T1120: Peripheral Device Hooking T1056.002: GUI Input Capture Discovery T1069: Permission Groups T1056.003: Web Portal Capture T1557: Man-in-the-Middle T1556: Modify Authentication Covery F1069.003: Cloud Groups T1069.002: Domain Groups T1069.001: Local Groups Process
T1040: Network Sniffing
T1003: 0S Credential Dumping
T1003.008: /etc/passwd and / T1053:001: E0cal droups
T1057: Process Discovery
T1012: Query Registry
T1018: Remote System T1518: Software Discovery T1518.001: Security Softw Discovery T1082: System Information Discovery T1016: System Network

Connections Discovery T1033: System Owner/User

Discovery T1124: System Time Discovery

T1007: System Service

T1210: Exploitation of Remote T1560: Archive Collected Data T1563: Remote Service Sess T1021.003: Dis T1021.002: SMB/Windows T1021.005: VNC T1021.006: Windows Remote T1025: Data from Removable Removable Media T1072: Software Deplo T1550: Use Alte Rule T1114.001: Local Email

T1056: Input Capture T1185: Man in the Brows

T1071: Application Laver T1071.004: DNS T1071.002: File Transfer T1123: Audio Capture T1119: Automated Collection 1071.003: Mail Protocols 1071.001: Web Protocols T1092: Communication Through T1602: Data from Configuration Removable Media T1132: Data Encoding Repository F1213: Data from Information T1132.002: Non-Standard Repositories T1005: Data from Local System T1039: Data from Network Encoding T1132,001: Standard Encodi T1001: Data Obfuscation T1001.001: Junk Data T1001.003: Protocol Media
T1074: Data Staged
T1074.001: Local Data Staging
T1074.002: Remote Data T1568.003: DNS Calculation T1568.002: Domain General 568.001: Fast Flux DNS Collection T1114.002: Remote Email Cryptography T1573.001: Symmetric Cryptography 1008: Fallback Channels T1105: Ingress Tool Transfer T1104: Multi-Stage Channels T1095: Non-Application Layer T1571: Non-Standard Port
T1572: Protocol Tunneling
T1090: Proxy
T1090.004: Domain Fronting T1219: Remote Access Software T1205: Traffic Signaling T1102: Web Service

T1020: Automated Exfiltration T1030: Data Transfer Size Limits T1048: Exfiltration Over T1531: Account Access Removal T1485: Data Destruction T1486: Data Encrypted for Impact T1565: Data Manipulation T1565.003: Runtime Dat Alternative Protocol T1041: Exfiltration Over C2 T1565.001: Stored Data Network Medium T1052: Exfiltration Over Physical T1565.002: Trans Medium T1567: Exfiltration Over Web Service T1029: Scheduled Transfer Service T1495: Firmware Corruption T1490: Inhibit System Recove T1498: Network Denial of Service
T1496: Resource Hijacking
T1489: Service Stop
T1529: System Shutdown/

APPENDIX H

Unmapped ATT&CK (Sub-)Techniques to CIS Safeguards Within an Attack Pattern

The following are ATT&CK (sub-)techniques that were used within an attack pattern, and assigned to an ATT&CK mitigation, but could not be defended against by a CIS Safeguard in the master mapping.

Attack Type	ATT&CK (Sub-) Technique ID	ATT&CK (Sub-)Technique Name
Malware	T1583	Acquire Infrastructure
Malware	T1583.005	Botnet
Malware	T1584	Compromise Infrastructure
Malware	T1584.001	Domains
Malware	T1586.002	Email Accounts
Malware	T1587	Develop Capabilities
Malware	T1587.003	Digital Certificates
Malware	T1588.004	Digital Certificates
Malware	T1592	Gather Victim Host Information
Malware	T1592.002	Software
Ransomware	T1480	Execution Guardrails
Ransomware	T1583	Acquire Infrastructure
Ransomware	T1583.005	Botnet
Ransomware	T1584	Compromise Infrastructure
Ransomware	T1585	Establish Accounts
Ransomware	T1587.001	Malware
Ransomware	T1587.002	Code Signing Certificates
Ransomware	T1588.001	Malware
Ransomware	T1588.002	Tool
Ransomware	T1588.003	Code Signing Certificates
Ransomware	T1588.004	Digital Certificates
Ransomware	T1588.005	Exploits
Ransomware	T1589.001	Credentials
Ransomware	T1589.003	Employee Names

Attack Type	ATT&CK (Sub-) Technique ID	ATT&CK (Sub-)Technique Name
Ransomware	T1592	Gather Victim Host Information
Ransomware	T1592.004	Client Configurations
Web App Hacking	T1583.006	Web Services
Web App Hacking	T1584.006	Web Services
Web App Hacking	T1596.005	Scan Databases
Insider Privilege	T1587.001	Malware
Insider Privilege	T1588.001	Malware
Insider Privilege	T1589	Gather Victim Identity Information
Insider Privilege	T1589.001	Credentials
Insider Privilege	T1591	Gather Victim Org Information
Insider Privilege	T1591.002	Business Relationships
Insider Privilege	T1592	Gather Victim Host Information
Insider Privilege	T1592.001	Hardware
Insider Privilege	T1592.002	Software
Insider Privilege	T1592.003	Firmware
Insider Privilege	T1592.004	Client Configurations
Targeted Intrusions	T1480	Execution Guardrails
Targeted Intrusions	T1587	Develop Capabilities
Targeted Intrusions	T1587.001	Malware
Targeted Intrusions	T1588	Obtain Capabilities
Targeted Intrusions	T1588.001	Malware
Targeted Intrusions	T1591	Gather Victim Org Information
Targeted Intrusions	T1591.001	Determine Physical Locations
Targeted Intrusions	T1592	Gather Victim Host Information

APPENDIX I

ATT&CK (Sub-)Techniques With No ATT&CK Mitigation Mapped Within an Attack Pattern

The following are ATT&CK (sub-)techniques that had no assignment to an ATT&CK mitigation (and therefore, were not mapped to a CIS Safeguard); however, they were used within an attack pattern.

Attack Type	ATT&CK (Sub-) technique ID	ATT&CK (Sub-)Technique Name
Malware	T1005	Data from Local System
Malware	T1007	System Service Discovery
Malware	T1012	Query Registry
Malware	T1016	System Network Configuration Discovery
Malware	T1018	Remote System Discovery
Malware	T1027.001	Binary Padding
Malware	T1027.003	Steganography
Malware	T1027.004	Compile After Delivery
Malware	T1027.005	Indicator Removal from Tools
Malware	T1033	System Owner/User Discovery
Malware	T1036.004	Masquerade Task or Service
Malware	T1039	Data from Network Shared Drive
Malware	T1049	System Network Connections Discovery
Malware	T1056	Input Capture
Malware	T1056.001	Keylogging
Malware	T1056.004	Credential API Hooking
Malware	T1057	Process Discovery
Malware	T1069	Permission Groups Discovery
Malware	T1069.001	Local Groups
Malware	T1069.002	Domain Groups
Malware	T1070.004	File Deletion
Malware	T1070.005	Network Share Connection Removal
Malware	T1074	Data Staged
Malware	T1074.001	Local Data Staging
Malware	T1082	System Information Discovery
Malware	T1083	File and Directory Discovery
Malware	T1087.003	Email Account
Malware	T1113	Screen Capture
Malware	T1115	Clipboard Data
Malware	T1124	System Time Discovery
Malware	T1125	Video Capture
Malware	T1140	Deobfuscate/Decode Files or Information
Malware	T1202	Indirect Command Execution
Malware	T1496	Resource Hijacking
Malware	T1497	Virtualization/Sandbox Evasion
Malware	T1505.003	Web Shell
Malware	T1505.005	Software Discovery
Malware	T1516	Security Software Discovery
Malware	T1518.001	System Shutdown/Reboot
Malware		Account Access Removal
	T1531	
Malware	T1546	Event Triggered Execution
Malware	T1547	Boot or Logon Autostart Execution
Malware	T1547.001	Registry Run Keys / Startup Folder
Malware	T1553.002	Code Signing

Attack Type	ATT&CK (Sub-) technique ID	ATT&CK (Sub-)Technique Name
Malware	T1564	Hide Artifacts
Malware	T1564.001	Hidden Files and Directories
Malware	T1568.001	Fast Flux DNS
Ransomware	T1005	Data from Local System
Ransomware	T1007	System Service Discovery
Ransomware	T1012	Query Registry
Ransomware	T1016	System Network Configuration Discovery
Ransomware	T1018	Remote System Discovery
Ransomware	T1020	Automated Exfiltration
Ransomware	T1027.001	Binary Padding
Ransomware	T1027.003	Steganography
Ransomware	T1027.004	Compile After Delivery
Ransomware	T1027.005	Indicator Removal from Tools
Ransomware	T1036.002	Right-to-Left Override
Ransomware	T1036.004	Masquerade Task or Service
Ransomware	T1039	Data from Network Shared Drive
Ransomware	T1049	System Network Connections Discovery
Ransomware	T1056	Input Capture
Ransomware	T1056.001	Keylogging
Ransomware	T1057	Process Discovery
Ransomware	T1069.002	Domain Groups
Ransomware	T1070.004	File Deletion
Ransomware	T1082	System Information Discovery
Ransomware	T1083	File and Directory Discovery
Ransomware	T1113	Screen Capture
Ransomware	T1120	Peripheral Device Discovery
Ransomware	T1123	Audio Capture
Ransomware	T1124	System Time Discovery
Ransomware	T1134.004	Parent PID Spoofing
Ransomware	T1140	Deobfuscate / Decode Files or Information
Ransomware	T1202	Indirect Command Execution
Ransomware	T1497	Virtualization/Sandbox Evasion
Ransomware	T1497.001	System Checks
Ransomware	T1497.002	User Activity Based Checks
Ransomware	T1497.003	Time Based Evasion
Ransomware	T1518	Software Discovery
Ransomware	T1518.001	Security Software Discovery
Ransomware	T1529	System Shutdown/Reboot
Ransomware	T1534	Internal Spearphishing
Ransomware	T1546.015	Component Object Model Hijacking
Ransomware	T1547	Boot or Logon Autostart Execution
Ransomware	T1547.001	Registry Run Keys / Startup Folder
Ransomware	T1553.002	Code Signing
Ransomware	T1555.002	Securityd Memory

Attack Type	ATT&CK (Sub-) technique ID	ATT&CK (Sub-)Technique Name
Ransomware	T1560.002	Archive via Library
Ransomware	T1560.003	Archive via Custom Method
Ransomware	T1564.001	Hidden Files and Directories
Ransomware	T1600	Weaken Encryption
Ransomware	T1600.002	Disable Crypto Hardware
Web App Hacking	T1007	System Service Discovery
Web App Hacking	T1016	System Network Configuration Discovery
Web App Hacking	T1018	Remote System Discovery
Web App Hacking	T1033	System Owner/User Discovery
Web App Hacking	T1036.006	Space after Filename
Web App Hacking	T1056	Input Capture
Web App Hacking	T1056.004	Credential API Hooking
Web App Hacking	T1057	Process Discovery
Web App Hacking	T1069	Permission Groups Discovery
Web App Hacking	T1082	System Information Discovery
Web App Hacking	T1083	File and Directory Discovery
Web App Hacking	T1120	Peripheral Device Discovery
Web App Hacking	T1124	System Time Discovery
Web App Hacking	T1134.004	Parent PID Spoofing
Web App Hacking	T1202	Indirect Command Execution
Web App Hacking	T1497	Virtualization/Sandbox Evasion
Web App Hacking	T1505.003	Web Shell
Web App Hacking	T1542.002	Component Firmware
Web App Hacking	T1546.005	Trap
Web App Hacking	T1546.012	Image File Execution Options Injection
Web App Hacking	T1546.015	Component Object Model Hijacking
Web App Hacking	T1547.010	Port Monitors
Web App Hacking	T1564.001	Hidden Files and Directories
Insider Privilege	T1005	Data from Local System
Insider Privilege	T1007	System Service Discovery
Insider Privilege	T1012	Query Registry
Insider Privilege	T1014	Rootkit
Insider Privilege	T1016	System Network Configuration Discovery
Insider Privilege	T1018	Remote System Discovery
Insider Privilege	T1020	Automated Exfiltration
Insider Privilege	T1025	Data from Removable Media
Insider Privilege	T1033	System Owner/User Discovery
Insider Privilege	T1039	Data from Network Shared Drive
Insider Privilege	T1056	Input Capture
Insider Privilege	T1056.001	Keylogging
Insider Privilege	T1056.004	Credential API Hooking
Insider Privilege	T1057	Process Discovery
Insider Privilege	T1069	Permission Groups Discovery
Insider Privilege	T1069.001	Local Groups
Insider Privilege	T1069.002	Domain Groups
Insider Privilege	T1069.003	Cloud Groups
Insider Privilege	T1070.004	File Deletion
Insider Privilege	T1074	Data Staged
Insider Privilege	T1074.001	Local Data Staging
Insider Privilege	T1074.002	Remote Data Staging
Insider Privilege	T1082	System Information Discovery
Insider Privilege	T1083	File and Directory Discovery
Insider Privilege	T1087.003	Email Account
Insider Privilege	T1113	Screen Capture
sidoi i iiviiege	11110	COISON OUPLUID

Attack Type	ATT&CK (Sub-) technique ID	ATT&CK (Sub-)Technique Name
Insider Privilege	T1115	Clipboard Data
Insider Privilege	T1120	Peripheral Device Discovery
Insider Privilege	T1123	Audio Capture
Insider Privilege	T1125	Video Capture
Insider Privilege	T1518	Software Discovery
Insider Privilege	T1518.001	Security Software Discovery
Insider Privilege	T1560.002	Archive via Library
Insider Privilege	T1560.003	Archive via Custom Method
Insider Privilege	T1564	Hide Artifacts
Insider Privilege	T1564.001	Hidden Files and Directories
Insider Privilege	T1564.005	Hidden File System
Targeted Intrusions	T1005	Data from Local System
Targeted Intrusions	T1007	System Service Discovery
Targeted Intrusions	T1012	Query Registry
Targeted Intrusions	T1016	System Network Configuration Discovery
Targeted Intrusions	T1018	Remote System Discovery
Targeted Intrusions	T1027.003	Steganography
Targeted Intrusions	T1027.004	Compile After Delivery
Targeted Intrusions	T1027.005	Indicator Removal from Tools
Targeted Intrusions	T1033	System Owner/User Discovery
Targeted Intrusions	T1036.004	Masquerade Task or Service
Targeted Intrusions	T1039	Data from Network Shared Drive
Targeted Intrusions	T1049	System Network Connections Discovery
Targeted Intrusions	T1056	Input Capture
Targeted Intrusions	T1056.001	Keylogging
Targeted Intrusions	T1057	Process Discovery
Targeted Intrusions	T1069	Permission Groups Discovery
Targeted Intrusions	T1069.001	Local Groups
Targeted Intrusions	T1069.002	Domain Groups
Targeted Intrusions	T1070.004	File Deletion
Targeted Intrusions	T1070.005	Network Share Connection Removal
Targeted Intrusions	T1070.006	Timestomp
Targeted Intrusions	T1074	Data Staged
Targeted Intrusions	T1074.001	Local Data Staging
Targeted Intrusions	T1074.002	Remote Data Staging
Targeted Intrusions	T1082	System Information Discovery
Targeted Intrusions	T1083	File and Directory Discovery
Targeted Intrusions	T1113	Screen Capture
Targeted Intrusions	T1124	System Time Discovery
Targeted Intrusions	T1134.004	Parent PID Spoofing
Targeted Intrusions	T1140	Deobfuscate/Decode Files or Information
Targeted Intrusions	T1207	Rogue Domain Controller
Targeted Intrusions	T1497.001	System Checks
Targeted Intrusions	T1497.003	Time Based Evasion
Targeted Intrusions	T1505.003	Web Shell
Targeted Intrusions	T1518	Software Discovery
Targeted Intrusions	T1518.001	Security Software Discovery
Targeted Intrusions	T1529	System Shutdown/Reboot
Targeted Intrusions	T1546	Event Triggered Execution
Targeted Intrusions	T1546.012	Image File Execution Options Injection
Targeted Intrusions	T1547	Boot or Logon Autostart Execution
Targeted Intrusions	T1547.001	Registry Run Keys / Startup Folder
Targeted Intrusions	T1553.002	Code Signing
Targeted Intrusions	T1564	Hide Artifacts

The Center for Internet Security, Inc. (CIS®) makes the connected world a safer place for people, businesses, and governments through our core competencies of collaboration and innovation. We are a community-driven nonprofit, responsible for the CIS Critical Security Controls® and CIS Benchmarks™, globally recognized best practices for securing IT systems and data. We lead a global community of IT professionals to continuously evolve these standards and provide products and services to proactively safeguard against emerging threats. Our CIS Hardened Images® provide secure, on-demand, scalable computing environments in the cloud.

CIS is home to the Multi-State Information Sharing and Analysis Center® (MS-ISAC®), the trusted resource for cyber threat prevention, protection, response, and recovery for U.S. State, Local, Tribal, and Territorial government entities, and the Elections Infrastructure Information Sharing and Analysis Center® (EI-ISAC®), which supports the rapidly changing cybersecurity needs of U.S. election offices. To learn more, visit CISecurity.org or follow us on Twitter: @CISecurity.

- cisecurity.org
- info@cisecurity.org
- S18-266-3460
- in Center for Internet Security
- @CISecurity
- TheCISecurity
- cisecurity